Advertisement

The Effects of Froude Number on a Turbulent Boundary Layer with a Free-Surface

  • Farshad NasiriEmail author
  • Elias Balaras
Article
  • 47 Downloads

Abstract

We present direct numerical simulations of a temporally developing turbulent boundary layer along a moving flat plate piercing through the free surface. The influence of the Froude number on the results is examined. We confirm the findings in the literature, that the vorticity and secondary flows generated at the free surface for low Froude numbers (\(Fr\sim 0\)) is primarily due to anisotropy of the normal Reynolds stresses. At intermediate Froude numbers however, the vorticity generated at the free surface is related to the curvature of the interface, and is directly injected in the outer and logarithmic portions of the turbulent boundary layer. This has an impact on its overall structure with increased levels of turbulent kinetic energy production. The deformable interface results in changes to the velocity distribution in the near-surface region and loss of self-similarity within the log-law region of the boundary layer.

Keywords

Turbulent boundary layer Surface piercing plate Air entrainment Direct numerical simulation 

Notes

Funding

This study was funded by the Office of Naval Research, Grant N12345678. Computational resources were provided by the DoD High Performance Computing Modernization Program (HPCMP).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Schlichting, H.: Boundary-Layer Theory, pp 555–606. McGraw-Hill, New York (1979)Google Scholar
  2. 2.
    Brocchini, M., Peregrine, D.H.: The dynamics of strong turbulence at free surfaces. Part 1. description. J. Fluid Mech. 449, 225–254 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Perot, B., Moin, P.: Shear-free turbulent boundary layers. Part 1. Physical insights into near-wall turbulence. J. Fluid Mech. 295, 199–227 (1995)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Komori, S., Ueda, H., Ogino, F., Mizushina, T.: Turbulent structure and transport mechanism at the free-surface of an open-channel. Intl J. Heat Mass Transfer 25, 513–521 (1982)CrossRefGoogle Scholar
  5. 5.
    Kumar, S., Gupta, R., Banerjee, S.: An experimental investigation of the characteristics of free-surface turbulence in channel flow. Phys. Fluids 10(2), 437–456 (1998)CrossRefGoogle Scholar
  6. 6.
    Nakagawa, H., Nezu, I.: Structure of space-time correlations of bursting phenomena in an open-channel flow. J. Fluid Mech. 104, 1–43 (1981)CrossRefGoogle Scholar
  7. 7.
    Pan, Y., Banerjee, S.: A numerical study of free-surface turbulence in channel flow. Phys. Fluids 7(7), 1649–1664 (1995)CrossRefGoogle Scholar
  8. 8.
    Shen, L., Triantafyllou, G.S., Yue, D.K.P.: Turbulent diffusion near a free surface. J. Fluid Mech. 407, 145–166 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Shen, L., Yue, D.K.P.: Large-Eddy simulation of free-surface turbulence. J. Fluid Mech. 440, 75–116 (2001)CrossRefGoogle Scholar
  10. 10.
    Grega, L.M., Wei, T., Leighton, R.I., Neves, J.C.: Turbulent mixed-boundary flow in a corner formed by a solid wall and a free surface. J. Fluid Mech. 294, 17–46 (1995)CrossRefGoogle Scholar
  11. 11.
    Hsu, T.Y., Grega, L.M., Leighton, R.I., Wei, T.: The kinetic energy transport in a corner formed by a solid wall and a free surface. J. Fluid Mech. 410, 343–366 (2000)CrossRefGoogle Scholar
  12. 12.
    Longo, V., Huang, H.P., Stern, F.: Solid/free-surface juncture boundary layer and wake. Exp. Fluids 25, 283–297 (1998)CrossRefGoogle Scholar
  13. 13.
    Sreedhar, M., Stern, F.: Large eddy simulation of temporally developing juncture flows. Int. J. Numer. Mech. Fluids 28, 47–72 (1998)CrossRefGoogle Scholar
  14. 14.
    Broglia, R., Pascarelli, A., Piomelli, U.: Large-eddy simulations of ducts with a free surface. J. Fluid. Mech. 484, 223–253 (2003)CrossRefGoogle Scholar
  15. 15.
    Washuta, N., Masnadi, N., Duncan, J.H.: Near-surface boundary layer turbublence along a horizontally-moving, surface-piercing vertical wall. Symposium on Naval Hydrodynamics (2014)Google Scholar
  16. 16.
    Qin, Z., Delaney, K., Riaz, A., Balaras, E.: Topology preserving advection of implicit interfaces on cartesian grids. J. Comput. Phys. 290, 219–238 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Vanella, M., Posa, A., Balaras, E.: Adaptive mesh refinement for immersed boundary methods. ASME J. Fluids Eng 136(4), 040909–9 (2014)CrossRefGoogle Scholar
  18. 18.
    Vanella, M., Rabenold, P., Balaras, E.: A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid–structure interaction problems. J. Comput. Phys. 229(18), 6427–6449 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Romate, J.E.: Absorbing boundary conditions for free surface waves. J. Comput. Physics 99, 135–145 (1992)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Delaney, K.: An adaptive mesh refinement solver for multiphase incompressible flows with large density ratios. PhD thesis, The George Washington University, Washington, DC, USA (2014)Google Scholar
  22. 22.
    Spalart, P.: Direct simulation of a turbulent boundary layer up to Re 𝜃 = 1410. J. Fluid. Mech. 187, 61–98 (1988)CrossRefGoogle Scholar
  23. 23.
    Roach, P.E., Brierlry, D.H.: The influence of a turbulent free stream on zero pressure gradient transitional boundary layer development. Part 1: Testcases T3a and T3b. In: Pironneau, D., Rode, W., Ryhming, I.L (eds.) Numerical Simulation of Unsteady Flows and Transition to Turbulence (1990)Google Scholar
  24. 24.
    Brocchini, M., Peregrine, D.H.: The dynamics of strong turbulence at free surfaces. Part 2. free-surface boundary conditions. J. Fluid Mech. 449, 255–290 (2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hinze, J.O.: Fundamentals of the hydrodynamics mechanisms of splitting in dispersion process. AIChE J 1(3), 289–295 (1955)CrossRefGoogle Scholar
  26. 26.
    Deane, G.B., Stokes, M.D.: Scale dependence of bubble creation mechanisms in breaking waves. Nature 418(6900), 839–844 (2002)CrossRefGoogle Scholar
  27. 27.
    Rensen, J., Luther, S., Lohse, D.: The effect of bubbles on developed turbulence. J. Fluid Mech. 538, 153–187 (2005)CrossRefGoogle Scholar
  28. 28.
    Talaia, M.A.R.: Terminal velocity of a bubble rise in a liquid column. Eng. Technol. 22(5), 264–268 (2007)Google Scholar
  29. 29.
    Masnadi, N., Erinin, M.A., Washuta, N., Nasiri, F., Balaras, E., Duncan, J.H.: Air entrainment and surface fluctuations in a turbulent ship hull boundary layer. J. Ship Research. In Press (2019)Google Scholar
  30. 30.
    Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)zbMATHGoogle Scholar
  31. 31.
    Longuet-Higgins, M.S.: Large-Eddy simulation of free-surface turbulence. J. Fluid Mech. 240, 659–679 (1994)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Lugt, H.J.: Local flow properties at a viscous free surface. Phys. Fluids 30(12), 3647–3652 (1987)CrossRefGoogle Scholar
  33. 33.
    Lundgren, T., Koumoutsakos, P.: On the generation of vorticity at the free surface. J. Fluid. Mech. 382, 351–366 (1999)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Saffman, P.: Vortex Dynamics. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  35. 35.
    Green, S.I.: Fluid Voritices: Fluid Mechnics and its Applications. Kluwer Academic Publishers, Netherlands (1995)CrossRefGoogle Scholar
  36. 36.
    Andre, M.A., Bardet, P.M.: Interfacial shear stress measurement using high spatial resolution multiphase PIV. Exp. Fluids 56(6), 1–18 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringThe George Washington UniversityWashingtonUSA

Personalised recommendations