Advertisement

Evaluation of Flame Area Based on Detailed Chemistry DNS of Premixed Turbulent Hydrogen-Air Flames in Different Regimes of Combustion

  • M. KleinEmail author
  • A. Herbert
  • H. Kosaka
  • B. Böhm
  • A. Dreizler
  • N. Chakraborty
  • V. Papapostolou
  • H. G. Im
  • J. Hasslberger
Article
  • 148 Downloads

Abstract

Precise evaluation of flame surface area plays a pivotal role in the fundamental understanding and accurate modelling of turbulent premixed flames. This necessity is reflected in the requirement for the instantaneous flame area evaluation of the turbulent burning velocity (by making use of Damköhler’s first hypothesis). Moreover, the information regarding flame area is required in the context of flame surface density based modelling, and for determining the wrinkling factor or estimating the efficiency function. Usually flame surface areas in experiments and Direct Numerical Simulation (DNS) analyses are evaluated differently and the present analysis aims at comparing these approaches by making use of a detailed chemistry DNS database of turbulent, statistically planar flames. It has been found that the flame surface area evaluation is sensitive to the choice of scalar quantity and the isosurface level, and this holds particularly true for two-dimensional evaluations. The conditions, which provide a satisfactory agreement between experimental and numerical approaches in the flame area evaluation, have been identified by a detailed comparative analysis of the usual postprocessing techniques.

Keywords

Detailed chemistry direct numerical simulation Damköhler’s first hypothesis Turbulent flame area Experimental postprocessing Flame surface density 

Notes

Funding Information

The authors are grateful to EPSRC, UK, the German Research Foundation (DFG, KL1456/5–1; DFG 237267381 – TRR 150) and competitive research funding from King Abdullah University of Science and Technology (KAUST) for financial support. Computational support by ARCHER, Rocket HPC, KAUST Supercomputing Laboratory is also gratefully acknowledged.

Compliance with Ethical Standards

Ethics Statement

This work did not involve any active collection of human data.

Competing Interests

We have no competing interests.

References

  1. 1.
    Peters, N.: Turbulent Combustion. Cambridge University Press (2000)Google Scholar
  2. 2.
    Poinsot T. and Veynante D., Theoretical and Numerical Combustion, R T Edwards, (2005)Google Scholar
  3. 3.
    Creta, F., Matalon, M.: Propagation of wrinkled turbulent flames in the context of hydrodynamic theory. J. Fluid Mech. 680, 225–264 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fogla, N., Creta, F., Matalon, M.: The turbulent flame speed for low-to-moderate turbulence intensities: hydrodynamic theory vs. experiments. Combustion and Flame. 175, 155–169 (2017)CrossRefGoogle Scholar
  5. 5.
    Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combust. Inst. 27, 917–925 (1998)CrossRefGoogle Scholar
  6. 6.
    Driscoll, J.F.: Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34, 91–134 (2008)CrossRefGoogle Scholar
  7. 7.
    Chakraborty, N., Alwazzan, D., Klein, M., Cant, R.S., On the validity of Damköhler’s first hypothesis in turbulent Bunsen burner flames: A computational analysis, Proc. Combust. Inst., 37 (2018)Google Scholar
  8. 8.
    Hawkes, E.R., and Cant, R.S., Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion. Combust. Flame, 126(3), 1617–1629. 590  https://doi.org/10.1016/S0010-2180(01)00273-5, (2001)
  9. 9.
    Nivarti G., Cant S., Direct Numerical Simulation of the bending effect in turbulent premixed flames. Proc. Combust. Inst., 36. 1903–1910, (2017)Google Scholar
  10. 10.
    Ahmed, U., Chakraborty, N. and Klein, M., Insights into the Bending Effect in Premixed Turbulent Combustion Using the Flame Surface Density Transport, Combust. Sci. Technol., accepted, (2019)Google Scholar
  11. 11.
    Gülder, O.: Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime. Proc. Combust. Inst. 31, 1369–1375 (2007)CrossRefGoogle Scholar
  12. 12.
    Sabelnikov, V.A., Yu, R., Lipatnikov, A.N.: Thin reaction zones in constant-density turbulent flows at low Damköhler numbers: theory and simulations. Phys. Fluids. 31, 055104 (2019)CrossRefGoogle Scholar
  13. 13.
    Hult, J., Gashi, S., Chakraborty, N., Klein, M., Jenkins, K.W., Cant, S., Kaminski, C.: Measurement of flame surface density for turbulent premixed flames using PLIF and DNS. Proc. Combust. Inst. 31, 1319–1326 (2007)CrossRefGoogle Scholar
  14. 14.
    Pope, S.B.: The evolution of surfaces in turbulence. Int. J. Eng. Sci. 26, 445–469 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Im, H.G., Arias, P.G., Chaudhuri, S., Uranakara, H.A.: Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames, 10th Asia-Pacific Conference on Combustion, Topical Review, July 19–22. Beijing, China (2015)Google Scholar
  16. 16.
    Burke, M.P., Chaos, M., Ju, Y., Dryer, F.L., Klippenstein, S.J.: Comprehensive H2-O2 kinetic model for high-pressure combustion. I. J. Chem. Kin. 444-472, (2012)Google Scholar
  17. 17.
    Im, H.G., Chen, J.H.: Preferential diffusion effects on the burning rate of interacting turbulent premixed hydrogen-air flames, combust. Flame. 126, 246 (2002)CrossRefGoogle Scholar
  18. 18.
    Klein, M., Chakraborty, N., Ketterl, S.: A Comparison of Strategies for Direct Numerical Simulation of Turbulence Chemistry Interaction in Generic Planar Turbulent Premixed Flames. Flow Turb, Combust (2017).  https://doi.org/10.1007/s10494-017-9843-9 CrossRefGoogle Scholar
  19. 19.
    Yoo, C.S., Wang, Y., Trouve, A., Im, H.G.: Characteristic boundary conditions for direct simulations of turbulent counterflow flames. Combust. Theor. Model. 9, 617–646 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rogallo, R.S.: Numerical experiments in homogeneous turbulence. NASA Ames Research Center Report No. 81315, (1981)Google Scholar
  21. 21.
    Passot, T., Pouquet, P.: Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 181, 441 (1987)CrossRefzbMATHGoogle Scholar
  22. 22.
    Chakraborty, N., Wang, L., Klein, M.: Streamline segment statistics of premixed flames with non-unity Lewis numbers. Phys. Rev. E. E89, 033015 (2014)CrossRefGoogle Scholar
  23. 23.
    Chaudhuri, S., Wu, F., Law, C.K.: Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations. Phys. Rev. E. 88, 033005 (2013)CrossRefGoogle Scholar
  24. 24.
    Chakraborty, N., Klein, M.: Influence of Lewis number on the surface density function transport in the thin reaction zones regime for turbulent premixed flames. Phys. Fluids. 20, 065102 (2008)CrossRefzbMATHGoogle Scholar
  25. 25.
    Chakraborty, N., Klein, M., Cant, S.: Effects of turbulent Reynolds number on the displacement speed statistics in the thin reaction zones regime of turbulent premixed combustion. J. Comb. 2011, 1–19 (2011).  https://doi.org/10.1155/2011/473679 Google Scholar
  26. 26.
    Klein, M., Chakraborty, N., Jenkins, K.W., Cant, R.S.: Effects of initial radius on the propagation of premixed flame kernels in a turbulent environment. Phys. Fluids. 18, 055102 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wu, F., Liang, W., Chen, Z., Ju, Y., Chung, K.: Law, uncertainty in stretch extrapolation of laminar flame speed from expanding spherical flames. Proc. Combust. Inst. 35, 663–670 (2015)CrossRefGoogle Scholar
  28. 28.
    Giannakopoulos, G.K., Gatzoulis, A., Frouzakis, C.E., Matalon, M., Tomboulides, A.G.: Consistent definitions of “flame displacement speed” and “Markstein length” for premixed flame propagation, combustion and flame. Combust. Flame. 162, 1249–1264 (2015)CrossRefGoogle Scholar
  29. 29.
    Sandeep, A., Proch, F., Kempf, A.M., Chakraborty, N.: Statistics of strain rates and surface density function in a flame-resolved high-fidelity simulation of a turbulent premixed bluff body burner, Phys. Fluids. 30, 065101 (2018)CrossRefGoogle Scholar
  30. 30.
    Haworth, D.C.: Applications of turbulent combustion modelling, turbulent combustion, lecture series 2003-04, von Karman Institute for Fluid Dynamics. March. 17-21, (2003)Google Scholar
  31. 31.
    Chakraborty, N., Klein, M.: A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation. Fluids. 20, 065102 (2008)CrossRefzbMATHGoogle Scholar
  32. 32.
    Utkarsh, A.: The ParaView Guide: a Parallel Visualization Application, pp. 978–1930934306. Kitware, ISBN (2015)Google Scholar
  33. 33.
    Pareja, J., Johchi, A., Li, T., Dreizler, A., Böhm, B.: A study of the spatial and temporal evolution of auto-ignition kernels using time-resolved tomographic OH-LIF. Proc. Combust. Inst. 37, 1321–1328 (2019)CrossRefGoogle Scholar
  34. 34.
    Donbar, J.M., Driscoll, J.F., Carter, C.D.: Reaction zone structure in turbulent non-premixed jet flames from CH-OH PLIF images. Combust. Flame. 122, 1–19 (2000)CrossRefGoogle Scholar
  35. 35.
    Jainski, C., Rißmann, M., Böhm, B., Dreizler, A.: Experimental investigation of flame surface density and mean reaction rate during flame–wall interaction. Proc. Combust. Inst. 36, 1827–1834 (2017)CrossRefGoogle Scholar
  36. 36.
    Canny, J.: A computational approach to edge detection. Readings in Computer Vision, Morgan Kaufmann Publishers. 184-203, (1987)Google Scholar
  37. 37.
    Jainski, C., Rißmann, M., Böhm, B., Janicka, J., Dreizler, A.: Sidewall quenching of atmospheric laminar premixed flames studied by laser-based diagnostics. Combustion and Flame. 183, 271–282 (2017)CrossRefGoogle Scholar
  38. 38.
    Peterson, B., Baum, E., Böhm, B., Dreizler, A.: Early flame propagation in a spark-ignition engine measured with quasi 4D-diagnostics. Proc. Combust. Inst. 35, 3829–3837 (2015)CrossRefGoogle Scholar
  39. 39.
    Hawkes, E.R., Sankaran, R., Chen, J.H.: Estimates of the three-dimensional flame surface density and every term in its transport equation from two-dimensional measurements. Proc. Combust. Inst. 33, 1447–1454 (2011)CrossRefGoogle Scholar
  40. 40.
    Chakraborty, N., Hawkes, E.R.: Determination of 3D flame surface density variables from 2D measurements: validation using direct numerical simulation, Phys. Fluids. 23, 065113 (2011)CrossRefGoogle Scholar
  41. 41.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21, 163–169 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringBundeswehr University MunichNeubibergGermany
  2. 2.Institute of Reactive Flows and DiagnosticsTechnische Universität DarmstadtDarmstadtGermany
  3. 3.School of EngineeringNewcastle UniversityNewcastle-Upon-TyneUK
  4. 4.Clean Combustion Research Center, KAUSTThuwalSaudi Arabia

Personalised recommendations