Flameless Combustion Characteristics of Producer Gas Premixed Charge in a Cyclone Combustor

  • Lemthong ChanphavongEmail author
  • K.A. Al-Attab
  • Z. A. Zainal
Original research


Producer gas (PG) flameless combustion in a premixed cyclone combustor was investigated experimentally and numerically. The experiment was carried out over different premixed charges of air/fuel mixture and inlet nozzle diameters under PG fuel input power up to 80 kW. Exhaust temperature was above 1050 K for the whole operating range with CO emission below 0.08 Vol.% and NOx emission of 420 ± 30 ppm. Swirl flow field, internal hot flue gas recirculation, and temperature distributions inside the combustor were numerically studied. The numerical results were validated by the experimental data and it confirmed the achievement of temperature uniformity throughout the combustion volume when operated under flameless combustion mode. The reaction regime of PG flameless combustion was further analyzed with respect to turbulent scale characteristics. The present PG flameless combustions were typified by both moderate Damköhler and Karlovitz numbers, falling into the Flamelets in eddies regime.


Producer gas Flameless combustion Cyclone combustor Temperature uniformity Turbulent reaction regime 



The authors are grateful to acknowledge the support from School of Mechanical Engineering, Universti Sains Malaysia and AUN/SEED-net scholarship.


This work was funded by Grant No. 304/PMEKANIK/6050348 from School of Mechanical Engineering, Universti Sains Malaysia, in combination with AUN/SEED-net scholarship.

Compliance with Ethical Standards

Conflict of Interests

The authors declare that they have no conflict of interest.


  1. 1.
    Tsuji, H., Gupta, A., Hasegawa, T., Katsuki, M., Kishimpyo, K., Morita, M.: High Temperature Air Combustion: from Energy Conservation to Pollution Reduction. (2003)Google Scholar
  2. 2.
    Wünning, J.A., Wünning, J.G.: Flameless oxidation to reduce thermal no-formation. Prog. Energy Combust. Sci. 23, 81–94 (1997). CrossRefGoogle Scholar
  3. 3.
    Cavaliere, A., De Joannon, M.: Mild combustion. Prog. Energy Combust. Sci. 30, 329–366 (2004). CrossRefGoogle Scholar
  4. 4.
    Khidr, K.I., Eldrainy, Y.A., EL-Kassaby, M.M.: Towards lower gas turbine emissions: flameless distributed combustion. Renew. Sust. Energ. Rev. 67, 1237–1266 (2017). CrossRefGoogle Scholar
  5. 5.
    Xing, F., Kumar, A., Huang, Y., Chan, S., Ruan, C., Gu, S., Fan, X.: Flameless combustion with liquid fuel: a review focusing on fundamentals and gas turbine application. Appl. Energy. 193, 28–51 (2017). CrossRefGoogle Scholar
  6. 6.
    Wang, F., Li, P., Mei, Z., Zhang, J., Mi, J.: Combustion of CH4/O2/N2 in a well stirred reactor. Energy. 72, 242–253 (2014). CrossRefGoogle Scholar
  7. 7.
    Khalil, A.E.E., Gupta, A.K.: Towards distributed combustion for ultra low emission using swirling and non-swirling flowfields. Appl. Energy. 121, 132–139 (2014). CrossRefGoogle Scholar
  8. 8.
    Jin, X., Zhou, Y.: Numerical analysis on microscopic characteristics of pulverized coal moderate and intense low-oxygen dilution combustion. Energy and Fuels. 29, 3456–3466 (2015). MathSciNetCrossRefGoogle Scholar
  9. 9.
    Khalil, A.E.E., Gupta, A.K.: Distributed swirl combustion for gas turbine application. Appl. Energy. 88, 4898–4907 (2011). CrossRefGoogle Scholar
  10. 10.
    Reddy, V.M., Sawant, D., Kumar, S.: Studies on optimization of a liquid fuel based low emission. In: Proceedings of the ASME 2012 Gas Turbine India Conference, pp. 1–9, Mumbai (2012)Google Scholar
  11. 11.
    Khalil, A.E.E., Gupta, A.K.: Swirling distributed combustion for clean energy conversion in gas turbine applications. Appl. Energy. 88, 3685–3693 (2011). CrossRefGoogle Scholar
  12. 12.
    Abdulsada, M., Griffiths, A., Syred, N., Morris, S., Bowen, P.: Effect of swirl number and fuel type upon the combustion limits in sirl combustors. In: ASME Turbo Expo 2011, vol. 2011, pp. 1–9. , June 6–10. Vancouver, British, Columbia, Canada (2011)Google Scholar
  13. 13.
    Gabler, H.C., Yetter, R.A., Glassman, I.: Asymmetric whirl combustion : a new approach for non-premixed low NOx gas turbine combustor design. Am. Inst. Aeronaut. Astronaut. 1–11 (1998).
  14. 14.
    Kumar, S., Paul, P.J., Mukunda, H.S.: Investigations of the scaling criteria for a mild combustion burner. Proc. Combust. Inst. 30 II. 30, 2613–2621 (2005). CrossRefGoogle Scholar
  15. 15.
    Zornek, T., Monz, T., Aigner, M.: Performance analysis of the micro gas turbine Turbec T100 with a new FLOX-combustion system for low calorific fuels. Appl. Energy. 159, 276–284 (2015). CrossRefGoogle Scholar
  16. 16.
    Danon, B., de Jong, W., Roekaerts, D.J.E.M.: Experimental and numerical investigation of a FLOX combustor firing low calorific value gases. Combust. Sci. Technol. 182, 1261–1278 (2010). CrossRefGoogle Scholar
  17. 17.
    Kwiatkowski, K., Mastorakos, E.: Regimes of nonpremixed combustion of hot low-calorific-value gases derived from biomass gasification. Energy and Fuels. 30, 4386–4397 (2016). CrossRefGoogle Scholar
  18. 18.
    Zainal, Z.A., Rifau, A., Quadir, G.A., Seetharamu, K.N.: Experimental investigation of a downdraft biomass gasifier. Biomass Bioenergy. 23, 283–289 (2002). CrossRefGoogle Scholar
  19. 19.
    Bhoi, P.R., Channiwala, S.A.: Optimization of producer gas fired premixed burner. Renew. Energy. 33, 1209–1219 (2008). CrossRefGoogle Scholar
  20. 20.
    Bhoi, P.R., Channiwala, S.A.: Emission characteristics and axial flame temperature distribution of producer gas fired premixed burner. Biomass Bioenergy. 33, 469–477 (2009). CrossRefGoogle Scholar
  21. 21.
    Panwar, N.L., Salvi, B.L., Reddy, V.S.: Performance evaluation of producer gas burner for industrial application. Biomass Bioenergy. 35, 1373–1377 (2011). CrossRefGoogle Scholar
  22. 22.
    Al-Attab, K.A., Zainal, Z.A.: Syngas production and combustion characteristics in a biomass fixed bed gasifier with cyclone combustor. Appl. Therm. Eng. 113, 714–721 (2017). CrossRefGoogle Scholar
  23. 23.
    Al-Attab, K.A., Zainal, Z.A.: Design and performance of a pressurized cyclone combustor (PCC) for high and low heating value gas combustion. Appl. Energy. 88, 1084–1095 (2011). CrossRefGoogle Scholar
  24. 24.
    Khaleghi, M., Hosseini, S.E., Wahid, M.A., Mohammed, H.A.: The Effects of Air Preheating and Fuel/Air Inlet Diameter on the Characteristics of Vortex Flame, pp. 1–10 (2015). Google Scholar
  25. 25.
    Mi, J., Li, P., Dally, B.B., Craig, R.A.: Importance of initial momentum rate and air-fuel premixing on moderate or intense low oxygen dilution (MILD) combustion in a recuperative furnace. Energy and Fuels. 23, 5349–5356 (2009). CrossRefGoogle Scholar
  26. 26.
    Li, P., Mi, J., Dally, B.B., Craig, R.A., Wang, F.: Premixed moderate or intense low-oxygen dilution (MILD) combustion from a single jet burner in a laboratory-scale furnace. Energy and Fuels. 25, 2782–2793 (2011). CrossRefGoogle Scholar
  27. 27.
    Li, P., Wang, F., Mi, J., Dally, B.B., Mei, Z.: MILD combustion under different premixing patterns and characteristics of the reaction regime. Energy and Fuels. 28, 2211–2226 (2014). CrossRefGoogle Scholar
  28. 28.
    Ilbas, M.: The effect of thermal radiation and radiation models on hydrogen-hydrocarbon combustion modelling. Int. J. Hydrog. Energy. 30, 1113–1126 (2005). CrossRefGoogle Scholar
  29. 29.
    Hosseini, S.E., Wahid, M.A.: Effects of burner configuration on the characteristics of biogas flameless combustion. Combust. Sci. Technol. 187, 1240–1262 (2015). CrossRefGoogle Scholar
  30. 30.
    Reddy, V.M., Trivedi, D., Sawant, D., Kumar, S.: Investigations on emission characteristics of liquid fuels in a swirl combustor. Combust. Sci. Technol. 187, 469–488 (2015). CrossRefGoogle Scholar
  31. 31.
    Veríssimo, A.S., Rocha, A.M.A., Costa, M.: Importance of the inlet air velocity on the establishment of flameless combustion in a laboratory combustor. Exp. Thermal Fluid Sci. 44, 75–81 (2013). CrossRefGoogle Scholar
  32. 32.
    Kumar, S., Paul, P.J., Mukunda, H.S.: Studies on a new high-intensity low-emission burner. Proc. Combust. Inst. 29, 1131–1137 (2002). CrossRefGoogle Scholar
  33. 33.
    Sorrentino, G., Sabia, P., De Joannon, M., Cavaliere, A., Ragucci, R.: Distributed combustion in a cyclonic burner. AIP Conf. Proc. 1906, (2017).
  34. 34.
    Turns, S.R.: An Introduction to Combustion: Concepts and Applications. McGraw-Hill, New York (2000)Google Scholar
  35. 35.
    Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193–266 (2002)CrossRefGoogle Scholar
  36. 36.
    ANSYS Chemkin-Pro: ANSYS Chemkin Pro,
  37. 37.
    Gregory P. Smith, David M. Golden, Michael Frenklach, Nigel W. Moriarty, Boris Eiteneer, Mikhail Goldenberg, C. Thomas Bowman, Ronald K. Hanson, Soonho Song, William C. Gardiner, Jr., Vitali V. Lissianski, and Z.Q.: GRI-Mech 3.0,
  38. 38.
    Peters, N.: The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107–132 (1999). CrossRefzbMATHGoogle Scholar
  39. 39.
    Chanphavong, L., Zainal, Z.A., Matsuoka, T., Nakamura, Y.: Simulation of producer gas flameless combustion with fresh reactant diluted by hot flue gas. Int. J. Energy Res. 42, 1–10 (2018). CrossRefGoogle Scholar
  40. 40.
    Abtahizadeh, E., van Oijen, J., De Goey, P.: Numerical study of mild combustion with entrainment of burned gas into oxidizer and/or fuel streams. Combust. Flame. 159, 2155–2165 (2012). CrossRefGoogle Scholar
  41. 41.
    Mandl, C., Obernberger, I., Scharler, I.R.: Characterisation of fuel bound nitrogen in the gasification process and the staged combustion of producer gas from the updraft gasification of softwood pellets. Biomass Bioenergy. 35, 4595–4604 (2011). CrossRefGoogle Scholar
  42. 42.
    Sukumaran, S., Kong, S.C.: Modeling fuel NOx formation from combustion of biomass-derived producer gas in a large-scale burner. Combust. Flame. 160, 2159–2168 (2013). CrossRefGoogle Scholar
  43. 43.
    Van Huynh, C., Kong, S.C.: Combustion and NOx emissions of biomass-derived syngas under various gasification conditions utilizing oxygen-enriched-air and steam. Fuel 107, 455–464 (2013).
  44. 44.
    Ouimette, P., Seers, P.: Numerical comparison of premixed laminar flame velocity of methane and wood syngas. Fuel. 88, 528–533 (2009). CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringUniversiti Sains MalaysiaPenangMalaysia
  2. 2.Department of Mechanical Engineering, Faculty of EngineeringNational University of LaosVientianeLaos
  3. 3.Department of Mechanical Engineering, Faculty of EngineeringSana’a UniversitySana’aYemen

Personalised recommendations