Modelling Sub-Grid Passive Scalar Statistics in Moderately Dense Evaporating Sprays

  • B. Wang
  • A. KronenburgEmail author
  • O. T. Stein


Spray evaporation in spatially decaying turbulence is simulated using carrier-phase direct numerical simulations (CP-DNS). The CP-DNS cover a much wider parameter range than earlier fully resolved DNS of regular droplet arrays that were used to calibrate scaling laws for sub-grid closures of the distribution of mixture fraction and its conditionally averaged scalar dissipation. The scaling laws include the effects of sub-grid interactions between droplet evaporation and turbulence, and here they are assessed by direct comparison with the statistics from the CP-DNS. Two issues can be observed: Firstly, care must be taken when interpreting the CP-DNS statistics as the lack of resolution of the point particle surface could impact on the values in DNS cells that are located within the (unresolved) quasi-laminar wake. Secondly, the scaling laws present similar agreement with CP-DNS data as had been observed before for the fully resolved DNS. The scaling law for the scalar dissipation approximates the DNS statistics well, independent of the droplet number density, Stokes number and turbulence intensity. The estimated mixture fraction distribution (the PDF) is good for the mixture fraction values larger than a suitable average value but deteriorates for smaller mixture fractions due to inherent model limitations. The data corroborate that the scaling laws for turbulent micro-mixing can potentially serve as sub-grid closures for mixture fraction based combustion models such as flamelet and conditional moment closure approaches in large eddy simulations and may provide better approximations than existing expressions derived from single-phase non-premixed combustion.


DNS Turbulent sprays Mixture fraction Scalar dissipation PDF 



We acknowledge the financial support by the Chinese Scholarship Council (NO 201406020093) (B. Wang) and the computational resources by HLRS Stuttgart.


  1. 1.
    Menon, S., Patel, N.: Subgrid modeling for simulation of spray combustion in large-scale combustors. AIAA J. 44(4), 709–723 (2006)CrossRefGoogle Scholar
  2. 2.
    Lackmann, T., Kerstein, A.R., Oevermann, M.: A representative linear eddy model for simulating spray combustion in engines (RILEM). Combust. Flame 193, 1–15 (2018)CrossRefGoogle Scholar
  3. 3.
    Boileau, M., Pascaud, S., Riber, E., Cuenot, B., Gicquel, L.Y.M., Poinsot, T.J., Cazalens, M.: Investigation of two-fluid methods for large eddy simulation of spray combustion in gas turbines. Flow Turbul. Combust. 80(3), 291–321 (2008)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ma, L., Roekaerts, D.: Modeling of spray jet flame under MILD condition with non-adiabatic FGM and a new conditional droplet injection model. Combust. Flame 165, 402–423 (2016)CrossRefGoogle Scholar
  5. 5.
    Bojko, B.T., DesJardin, P.E.: On the development and application of a droplet flamelet-generated manifold for use in two-phase turbulent combustion simulations. Combust. Flame 183, 50–65 (2017)CrossRefGoogle Scholar
  6. 6.
    Ukai, S., Kronenburg, A., Stein, O.T.: Simulation of dilute acetone spray flames with LES-CMC using two conditional moments. Flow Turbul. Combust. 93(3), 405–423 (2014)CrossRefGoogle Scholar
  7. 7.
    Ukai, S., Kronenburg, A., Stein, O.T.: Large eddy simulation of dilute acetone spray flames using CMC coupled with tabulated chemistry. Proc. Combust. Inst. 35 (2), 1667–1674 (2015)CrossRefGoogle Scholar
  8. 8.
    Giusti, A., Mastorakos, E.: Detailed chemistry LES/CMC simulation of a swirling ethanol spray flame approaching blow-off. Proc. Combust. Inst. 36(2), 2625–2632 (2017)CrossRefGoogle Scholar
  9. 9.
    Hasse, C., Peters, N.: A two mixture fraction flamelet model applied to split injections in a DI Diesel engine. Proc. Combust. Inst. 30(2), 2755–2762 (2005)CrossRefGoogle Scholar
  10. 10.
    Navarro-Martinez, S., Kronenburg, A., Di Mare, F.: Conditional moment closure for large eddy simulations. Flow Turbul. Combust. 75(1-4), 245–274 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Bilger, R.W.: Turbulent flows with nonpremixed reactants. In: Turbulent reacting flows, pp 65–113. Springer, Berlin (1980)Google Scholar
  12. 12.
    O’Brien, E.E., Jiang, T.L.: The conditional dissipation rate of an initially binary scalar in homogeneous turbulence. Phys. Fluids A 3(12), 3121–3123 (1991)CrossRefzbMATHGoogle Scholar
  13. 13.
    Réveillon, J., Vervisch, L.: Spray vaporization in nonpremixed turbulent combustion modeling: a single droplet model. Combustion and flame 121(1-2), 75–90 (2000)CrossRefGoogle Scholar
  14. 14.
    Schroll, P., Wandel, A.P., Cant, R.S., Mastorakos, E.: Direct numerical simulations of autoignition in turbulent two-phase flows. Proc. Combust. Inst. 32(2), 2275–2282 (2009)CrossRefGoogle Scholar
  15. 15.
    Wacks, D.H., Chakraborty, N., Mastorakos, E.: Statistical analysis of turbulent flame-droplet interaction: a direct numerical simulation study. Flow Turbul. Combust. 96(2), 573–607 (2016)CrossRefGoogle Scholar
  16. 16.
    Sreedhara, S., Huh, K.Y.: Conditional statistics of nonreacting and reacting sprays in turbulent flows by direct numerical simulation. Proc. Combust. Inst. 31(2), 2335–2342 (2007)CrossRefGoogle Scholar
  17. 17.
    Wang, H., Luo, K., Fan, J.: Direct numerical simulation and CMC (conditional moment closure) sub-model validation of spray combustion. Energy 46(1), 606–617 (2012)CrossRefGoogle Scholar
  18. 18.
    Seo, J., Huh, K.Y.: Analysis of combustion regimes and conditional statistics of autoigniting turbulent n-heptane sprays. Proc. Combust. Inst. 33(2), 2127–2134 (2011)CrossRefGoogle Scholar
  19. 19.
    Ukai, S., Kronenburg, A., Stein, O.T.: LES-CMC Of a dilute acetone spray flame. Proc. Combust. Inst. 34(1), 1643–1650 (2013)CrossRefGoogle Scholar
  20. 20.
    Bilger, R.W.: A mixture fraction framework for the theory and modeling of droplets and sprays. Combust. Flame 158(2), 191–202 (2011)CrossRefGoogle Scholar
  21. 21.
    Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25(6), 595–687 (1999)CrossRefGoogle Scholar
  22. 22.
    Zoby, M.R.G., Navarro-Martinez, S., Kronenburg, A., Marquis, A.J.: Turbulent mixing in three-dimensional droplet arrays. Int. J. Heat Fluid Flow 32(3), 499–509 (2011)CrossRefGoogle Scholar
  23. 23.
    Wang, B., Kronenburg, A., Dietzel, D., Stein, O.T.: Assessment of scaling laws for mixing fields in inter-droplet space. Proc. Combust. Inst. 36(2), 2451–2458 (2017)CrossRefGoogle Scholar
  24. 24.
    Wang, B., Kronenburg, A., Tufano, G.L., Stein, O.T.: Fully resolved DNS of droplet array combustion in turbulent convective flows and modelling for mixing fields in inter-droplet space. Combust. Flame 189, 347–366 (2018)CrossRefGoogle Scholar
  25. 25.
    Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30(4), 299–303 (1941)MathSciNetGoogle Scholar
  26. 26.
    Salazar, J.P., Collins, L.R.: Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech. 41, 405–432 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Tufano, G.L., Stein, O.T., Wang, B., Kronenburg, A., Rieth, M., Kempf, A.M.: Coal particle volatile combustion and flame interaction. Part II: effects of particle Reynolds number and turbulence. Fuel 234, 723–731 (2018)CrossRefGoogle Scholar
  28. 28.
    Kronenburg, A., Bilger, R.W.: Modelling of differential diffusion effects in nonpremixed nonreacting turbulent flow. Phys. Fluids 9.5, 1435–1447 (1997)CrossRefGoogle Scholar
  29. 29.
    Kronenburg, A., Bilger, R.W.: Modelling differential diffusion in nonpremixed reacting turbulent flow: model development. Combust. Sci. Technol. 166(1), 195–227 (2001)CrossRefGoogle Scholar
  30. 30.
    Xu, H., Hunger, F., Vascellari, M., Hasse, C.: A consistent flamelet formulation for a reacting char particle considering curvature effects. Combust. Flame 160(11), 2540–2558 (2013)CrossRefGoogle Scholar
  31. 31.
    Hunger, F., Dietzsch, F., Gauding, M., Hasse, C.: A priori analysis of differential diffusion for model development for scale-resolving simulations. Phys. Rev. Fluids 3(1), 014601 (2018)CrossRefGoogle Scholar
  32. 32.
    Batchelor, G.K.: Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5(1), 113–133 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Elghobashi, S.: On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4), 309–329 (1994)CrossRefGoogle Scholar
  34. 34.
    Miller, R.S., Bellan, J.: Direct numerical simulation of a confined three-dimensional gas mixing layer with one evaporating hydrocarbon-droplet-laden stream. J. Fluid Mech. 384, 293–338 (1999)CrossRefzbMATHGoogle Scholar
  35. 35.
    White, F.M.: Viscous Fluid Flow. McGraw-Hill, New York (1974)zbMATHGoogle Scholar
  36. 36.
    Turns, S.R.: An introduction to combustion. McGraw-Hill, New York (1996)Google Scholar
  37. 37.
    Faeth, G.M.: Current status of droplet and liquid combustion. Prog. Energy Combust. Sci. 3(4), 191–224 (1977)CrossRefGoogle Scholar
  38. 38.
    Green, D.W., Perry, R.H.: Perry’s chemical engineers’ handbook. McGraw-Hill, New York (2008)Google Scholar
  39. 39.
    Billson, M., Eriksson, L.E., Davidson, L.: Jet noise prediction using stochastic turbulence modeling. In: 9th AIAA/CEAS aeroacoustics conference and exhibit, p 3282 (2003)Google Scholar
  40. 40.
    Sulabh, K.D., Jacob, E.T., Driscoll, J.F.: Unsteady aspects of lean premixed-prevaporized (LPP) gas turbine combustors: flame-flame interactions. AIAA g010-1148 (2010)Google Scholar
  41. 41.
    Williams, F.A.: Combustion theory, 2nd edn. Perseus Books, Reading, Massachussetts (1985)Google Scholar
  42. 42.
    Sirignano, W.A.: Fluid dynamics and transport of droplets and sprays. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  43. 43.
    Vo, S., Kronenburg, A., Stein, O.T., Hawkes, E.R.: Direct numerical simulation of non-premixed syngas combustion using OpenFOAM. In: High Performance Computing in Science and Engineering ’16, pp 245–257. Springer (2017)Google Scholar
  44. 44.
    Yeung, P.K., Pope, S.B.: Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531–586 (1989)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Shekar, S.: Direct numerical simulation of isotropic, decaying turbulence. ITV report, University of Stuttgart (2011)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institut für Technische VerbrennungUniversität StuttgartStuttgartGermany

Personalised recommendations