Experimental and Numerical Investigation of the Response of a Swirled Flame to Flow Modulations in a Non-Adiabatic Combustor

  • Adrien ChatelierEmail author
  • Thibault Guiberti
  • Renaud Mercier
  • Nicolas Bertier
  • Benoît Fiorina
  • Thierry Schuller


Turbulent combustion models for Large Eddy Simulation (LES) aims at predicting the flame dynamics. So far, they have been proven to predict correctly the mean flow and flame properties in a wide range of configurations. A way to challenge these models in unsteady situations is to test their ability to recover turbulent flames submitted to harmonic flow modulations. In this study, the Flame Transfer Function (FTF) of a CH4/H2/air premixed swirled-stabilized flame submitted to harmonic flowrate modulations in a non-adiabatic combustor is compared to the response computed using the Filtered TAbulated Chemistry for LES (F-TACLES) formalism. Phase averaged analysis of the perturbed flow field and flame response reveal that the velocity field determined with Particle Image Velocimetry measurements, the heat release distribution inferred from OH* images and the probability of presence of burnt gases deduced from OH-Planar Laser Induced Fluorescence measurements are qualitatively well reproduced by the simulations. However, noticeable differences between experiments and simulations are also observed in a narrow frequency range. A detailed close-up view of the flow field highlight differences in experimental OH* and numerical volumetric heat release rate distributions which are at the origin of the differences observed between the numerical and experimental FTF. These differences mainly originate from the outer shear layer of the swirling jet where a residual reaction layer takes place in the simulations which is absent in the experiments. Consequences for turbulent combustion modeling are suggested by examining the evolution of the perturbed flame brush envelope along the downstream distance of the perturbed flames. It is shown that changing the grid resolution and the flame subgrid scale wrinkling factor in these regions does not alter the numerical results. It is finally concluded that the combined effects of strain rate and enthalpy defect due to heat losses are the main factors leading to small but sizable differences of the flame response to coherent structures synchronized by the acoustic forcing in the outer shear layer of the swirling flow. These small differences in flame response lead in turn to a misprediction of the FTF at specific forcing frequencies.


Swirling flames Flame dynamics Flame Transfer Function Turbulent premixed combustion Non-adiabatic combustion 



Vincent Moureau and Ghislain Lartigue from CORIA are acknowledged for providing the YALES2 flow solver through the SUCCESS scientific group.

Funding Information

This work was performed using HPC resources from GENCI-IDRIS (Grants 2015-x20152b0164 and 2016-x2016b0164). This work was supported by the ANR-10-EESI-0005 Grant of the French Ministry of Research.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Poinsot, T.: Proc. Combust. Inst. 36, 1 (2017)CrossRefGoogle Scholar
  2. 2.
    Komarek, T., Polifke, W.: J. Eng. Gas Turbines Power 132(6), 061503 (2010)CrossRefGoogle Scholar
  3. 3.
    Palies, P., Durox, D., Schuller, T., Candel, S.: Combust. Flame 157 (9), 1698 (2010)CrossRefGoogle Scholar
  4. 4.
    Kim, K.T., Hochgreb, S.: Combust. Flame 158(12), 2482 (2011)CrossRefGoogle Scholar
  5. 5.
    Cosic, B., Terhaar, S., Moeck, J., Paschereit, C.: Combust. Flame 162, 1046 (2015)CrossRefGoogle Scholar
  6. 6.
    Noiray, N., Durox, D., Schuller, T., Candel, S.: J. Fluid Mech. 615, 139 (2008)CrossRefGoogle Scholar
  7. 7.
    Tay-Wo-Chong, L., Bomberg, S., Ulhaq, A., Komarek, T., Polifke, W.: J. Eng. Gas Turbines Power 134(2), 021502 (2012)CrossRefGoogle Scholar
  8. 8.
    Iudiciani, P., Duwig, C.: Flow Turbul. Combust. 86, 639 (2011)CrossRefGoogle Scholar
  9. 9.
    Palies, P., Schuller, T., Durox, D., Gicquel, L., Candel, S.: Phys. Fluids 23(037101), 15 (2011)Google Scholar
  10. 10.
    Krediet, H., Beck, C., Krebs, W., Schimek, S., Paschereit, C., Kok, J.: Combust. Sci. Technol. 184(7-8), 888 (2012)CrossRefGoogle Scholar
  11. 11.
    Tay-Wo-Chong, L., Polifke, W.: J. Eng. Gas Turbines Power 135(2), 021502 (2013)CrossRefGoogle Scholar
  12. 12.
    Hermeth, S., Staffelbach, G., Gicquel, L., Anisimov, V., Cirigliano, C., Poinsot, T.: Combust. Flame 161(1), 184 (2014)CrossRefGoogle Scholar
  13. 13.
    Bauerheim, M., Staffelbach, G., Worth, N., Dawson, J., Gicquel, L., Poinsot, T.: Proc. Combust. Inst. 35, 3355 (2015)CrossRefGoogle Scholar
  14. 14.
    Han, X., Morgans, A.S.: Combust. Flame 162, 1778 (2015)CrossRefGoogle Scholar
  15. 15.
    Huang, Y., Yang, V.: Prog. Energy Combust. Sci. 35(4), 293 (2009)CrossRefGoogle Scholar
  16. 16.
    Candel, S., Durox, D., Schuller, T., Bourgouin, J.F., Moeck, J.P.: Annu. Rev. Fluid Mech. 46, 147 (2014)CrossRefGoogle Scholar
  17. 17.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion (RT Edwards, Inc.) (2005)Google Scholar
  18. 18.
    Pitsch, H.: Rev, Annu. Fluid Mech. 38, 453 (2006)CrossRefGoogle Scholar
  19. 19.
    Fiorina, B., Mercier, R., Kuenne, G., Ketelheun, A., Avdić, A., Janicka, J., Geyer, D., Dreizler, A., Alenius, E., Duwig, C., et al.: Combust. Flame 162(11), 4264 (2015)CrossRefGoogle Scholar
  20. 20.
    Tay Wo Chong, L., Komarek, T., Kaess, R., Föller, S., Polifke, W.:. In: Proceedings of the ASME Turbo Expo 2010, ed. by ASME (ASME Turbo Expo 2010 : Power for Land, Sea and Air, June 14-18, 2010, Glasgow, UK). GT2010-22769 (2010)Google Scholar
  21. 21.
    Tay Wo Chong, L., Polifke, W.: J. Eng. Gas Turbines Power 135(9 pages), 021502 (2013)CrossRefGoogle Scholar
  22. 22.
    AVBP website.
  23. 23.
    Legier, J.P., Poinsot, T., Veynante, D.:. In: Proceedings of the summer program, pp 157–168 (2000)Google Scholar
  24. 24.
    Komarek, T., Chong, L.T.W., Zellhuber, M., Huber, A., Polifke, W.: In: Int. Conf. on jets, wakes and separated flows, Technical University of Berlin (2008)Google Scholar
  25. 25.
    Chong, L.T.W., Komarek, T., Zellhuber, M., Lenz, J., Hirsch, C., Polifke, W.: In: Proceedings of European Comb. Meeting (2009)Google Scholar
  26. 26.
    Keppeler, R., Pfitzner, M., Chong, L.T.W., Komarek, T., Polifke, W.: In: Proceedings of ASME Turbo Expo, pp 457–467 (2012)Google Scholar
  27. 27.
    Tay Wo Chong, L., Komarek, T., Zellhuber, M., Hirsch, C., Polifke, W.: Flow Turbul. Combust. 97, 263 (2016)CrossRefGoogle Scholar
  28. 28.
    Tay Wo Chong, L., Scarpato, A., Polifke, W.: In: GT2017-63357 in Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition GT2017 June 26-30, 2017, Charlotte, NC, USA (2017)Google Scholar
  29. 29.
    Guiberti, T.F., Durox, D., Scouflaire, P., Schuller, T.: Proc. Combust. Inst. 35(2), 1385 (2015)CrossRefGoogle Scholar
  30. 30.
    Mercier, R., Guiberti, T., Chatelier, A., Durox, D., Gicquel, O., Darabiha, N., Schuller, T., Fiorina, B.: Combust. Flame 171, 42 (2016)CrossRefGoogle Scholar
  31. 31.
    Code_Saturne website.
  32. 32.
    Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Symp. Combust. 27(1), 917 (1998)CrossRefGoogle Scholar
  33. 33.
    Fureby, C.: Proc. Combust. Inst. 30(1), 593 (2005)CrossRefGoogle Scholar
  34. 34.
    Balachandran, R., Ayoola, B., Kaminski, C., Dowling, A., Mastorakos, E.: Combust. and Flame 143(1), 37 (2005)CrossRefGoogle Scholar
  35. 35.
    Kedia, K., Altay, H., Ghoniem, A.: Proc. Combust. Inst. 33, 1113 (2011)CrossRefGoogle Scholar
  36. 36.
    Mejia, D., Selle, L., Bazile, R., Poinsot, T.: Proc. Combust. Inst. 35, 3201 (2015)CrossRefGoogle Scholar
  37. 37.
    Kedia, K., Ghoniem, A.: Proc. Combust. Inst. 35, 1065 (2015)CrossRefGoogle Scholar
  38. 38.
    Moureau, V., Domingo, P., Vervisch, L.: Comptes Rendus Mé,canique 339(2), 141 (2011)CrossRefGoogle Scholar
  39. 39.
    Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Phys. Fluids 23(8), 085106 (2011)CrossRefGoogle Scholar
  40. 40.
    Fiorina, B., Vicquelin, R., Auzillon, P., Darabiha, N., Gicquel, O., Veynante, D.: Combust. Flame 157(3), 465 (2010)CrossRefGoogle Scholar
  41. 41.
    Mercier, R., Auzillon, P., Moureau, V., Darabiha, N., Gicquel, O., Veynante, D., Fiorina, B.: Flow Turbul. Combust. 93(2), 349 (2014)CrossRefGoogle Scholar
  42. 42.
    Franzelli, B., Fiorina, B., Darabiha, N.: Proc. Combust. Inst. 34(1), 1659 (2013)CrossRefGoogle Scholar
  43. 43.
    Lindstedt, P.: 12 Month progress report 1, tech. rep. tr-96 009. Tech. rep. Brite Euram Program Project BRPR950056 (1997)Google Scholar
  44. 44.
    Charlette, F., Meneveau, C., Veynante, D.: Combust. Flame 131(1), 159 (2002)CrossRefGoogle Scholar
  45. 45.
    Palies, P., Durox, D., Schuller, T., Candel, S.: J. Fluid Mech. 672, 545 (2011)CrossRefGoogle Scholar
  46. 46.
    Durox, D., Schuller, T., Candel, S.: Proc. Combust. Inst. 30, 1717 (2005)CrossRefGoogle Scholar
  47. 47.
    Oberleithner, K., Schmiek, S., Paschereit, C.: Combust. Flame 162, 86 (2015)CrossRefGoogle Scholar
  48. 48.
    Schuller, T., Durox, D., Candel, S.: Combust. Flame 134, 21 (2003)CrossRefGoogle Scholar
  49. 49.
    Preetham, Hemchandra, S., Lieuwen, T.: J. Propuls. Power 24(6), 1390 (2008)CrossRefGoogle Scholar
  50. 50.
    Bunce, N.A., Quay, B.D., Santavicca, D.A.: J. Eng. Gas Turbines Power 136(2), 021503 (2013)CrossRefGoogle Scholar
  51. 51.
    Armitage, C., Balachandran, R., Mastorakos, E., Cant, R.: Combust. Flame 146(3), 419 (2006)CrossRefGoogle Scholar
  52. 52.
    Hall, J.M., Petersen, E.L.: In. J. Chem. Kinet. 38(12), 714 (2006)CrossRefGoogle Scholar
  53. 53.
    Klarmann, N., Sattelmayer, T., Weiqung, G., Magni, F.: AIAA paper (2016-2120) (2016)Google Scholar
  54. 54.
    Breda, P., Zips, J., Pfitzner, M.: In: Proceedings of the 3rd World congress on momentum, heat and mass transfer (MHMT’18) (2018)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratoire EM2C, CNRS, CentraleSupélecUniversité Paris-SaclayGif-sur-Yvette CedexFrance
  2. 2.ONERAChâtillon CedexFrance
  3. 3.Clean Combustion Research CenterKAUSTThuwalSaudi Arabia
  4. 4.SAFRAN TechMagny-les-HameauxFrance
  5. 5.Institut de Mécanique des Fluides de Toulouse, IMFTUniversité de Toulouse, CNRSToulouseFrance

Personalised recommendations