Advertisement

Influence of Boundary Conditions on the Flame Stabilization Mechanism and on Transient Auto-ignition in the DLR Jet-in-Hot-Coflow Burner

  • Christoph M. Arndt
  • Wolfgang Meier
Article

Abstract

Transient auto-ignition is a key factor for flame stabilization and flame initialization in several technical combustion systems such as internal combustion engines or gas turbine combustors. Reliable numerical simulations of auto-ignition stabilized flames are important for the development of new combustor systems. For detailed model validation, knowledge of the sensitivity of different system response quantities (SRQs) of interest to the boundary conditions in combination with the accuracy of boundary conditions is essential, especially with respect to uncertainty quantification of numerical simulations. In the current study, the flame stabilization and auto-ignition in the DLR Jet-in-Hot-Coflow burner was examined experimentally using high-speed OH* chemiluminescence. Here, methane was either injected continuously to study the flame stabilization mechanism of steady state lifted jet flames, or in a pulsed manner to study the formation of auto-ignition kernels, into the hot exhaust gas of a lean, premixed hydrogen/air flame. The flame stabilization height, and the location and time of initial auto-ignition kernels for a case with transient auto-ignition were evaluated with respect to several boundary conditions, such as coflow temperature as well as coflow- and jet-velocity. A relative sensitivity of the measured SRQs on the boundary conditions was introduced in order to quantitatively compare steady state flame to transient auto-ignition characteristics and to assess the quantitative influence of different boundary conditions. Comparison of the auto-ignition dynamics in the steady state and during transient fuel injection allowed assessing the role of auto-ignition in the flame stabilization mechanism for different boundary conditions; accompanying chemical kinetic calculations were used to quantify the influence of strain on auto-ignition and flame propagation for the current conditions, allowing further insight into the flame stabilization mechanism in Jet-in-Hot-Coflow flames.

Keywords

Auto-ignition Jet-in-Hot-Coflow Boundary conditions Flame stabilization Uncertainty quantification 

Notes

Acknowledgements

Robert Schießl is gratefully acknowledged for performing the INSFLA simulations. Juliane Prause is gratefully acknowledged for the fruitful discussions.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Güthe, F., Hellat, J., Flohr, P.: The reheat concept: the proven pathway to ultralow emissions and high efficiency and flexibility. J. Eng. Gas Turbines Power 131(2), 021503 (2009).  https://doi.org/10.1115/1.2836613 CrossRefGoogle Scholar
  2. 2.
    Fleck, J.M., Griebel, P., Steinberg, A.M., Arndt, C.M., Aigner, M.: Auto-ignition and flame stabilization of hydrogen/natural gas/nitrogen jets in a vitiated cross-flow at elevated pressure. Int. J. Hydrogen Energy 38(36), 16441–16452 (2013).  https://doi.org/10.1016/j.ijhydene.2013.09.137 CrossRefGoogle Scholar
  3. 3.
    Fleck, J.M., Griebel, P., Steinberg, A.M., Arndt, C.M., Naumann, C., Aigner, M.: Autoignition of hydrogen/nitrogen jets in vitiated air crossflows at different pressures. Proc. Combust. Inst. 34(2), 3185–3192 (2013).  https://doi.org/10.1016/j.proci.2012.05.039 CrossRefGoogle Scholar
  4. 4.
    Lammel, O., Schütz, H., Schmitz, G., Lückerath, R., Stöhr, M., Noll, B., Aigner, M., Hase, M., Krebs, W.: FLOX®; combustion at high power density and high flame temperatures. J. Eng. Gas Turbines Power 132(12), 121503 (2010).  https://doi.org/10.1115/1.4001825 CrossRefGoogle Scholar
  5. 5.
    Lammel, O., Stöhr, M., Kutne, P., Dem, C., Meier, W., Aigner, M.: Experimental analysis of confined jet flames by laser measurement techniques. J. Eng. Gas Turbines Power 134(4), 041506 (2012).  https://doi.org/10.1115/1.4004733 CrossRefGoogle Scholar
  6. 6.
    Boxx, I., Arndt, C.M., Carter, C.D., Meier, W.: Highspeed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor. Exp. Fluids 52(3), 555–567 (2012).  https://doi.org/10.1007/s00348-010-1022-x CrossRefGoogle Scholar
  7. 7.
    Cabra, R., Myhrvold, T., Chen, J.Y., Dibble, R.W., Karpetis, A.N., Barlow, R.S.: Simultaneous laser Raman-Rayleigh-LIF measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst. 29(2), 1881–1888 (2002).  https://doi.org/10.1016/S1540-7489(02)80228-0 CrossRefGoogle Scholar
  8. 8.
    Dally, B.B., Karpetis, A.N., Barlow, R.S.: Structure of turbulent non-premixed jet flames in a diluted hot coflow. Proc. Combust. Inst. 29(1), 1147–1154 (2002).  https://doi.org/10.1016/S1540-7489(02)80145-6 CrossRefGoogle Scholar
  9. 9.
    Medwell, P.R., Kalt, P.A.M., Dally, B.B.: Imaging of diluted turbulent ethylene flames stabilized on a jet in hot coflow (JHC) burner. Combust. Flame 152 (1–2), 100–113 (2008).  https://doi.org/10.1016/j.combustflame.2007.09.003 CrossRefGoogle Scholar
  10. 10.
    Gordon, R.L., Masri, A.R., Mastorakos, E.: Simultaneous Rayleigh temperature, OH- and CH2O-LIF imaging of methane jets in a vitiated coflow. Combust. Flame 155 (1–2), 181–195 (2008).  https://doi.org/10.1016/j.combustflame.2008.07.001 CrossRefGoogle Scholar
  11. 11.
    Arndt, C.M., Gounder, J.D., Meier, W., Aigner, M.: Auto-ignition and flame stabilization of pulsed methane jets in a hot vitiated coflow studied with high-speed laser and imaging techniques. Appl. Phys. B 108(2), 407–417 (2012).  https://doi.org/10.1007/s00340-012-4945-5 CrossRefGoogle Scholar
  12. 12.
    Johannessen, B., North, A., Dibble, R., Lovas, T.: Experimental studies of autoignition events in unsteady hydrogen-air flames. Combust. Flame 162(9), 3210–3219 (2015).  https://doi.org/10.1016/j.combustflame.2015.05.008 CrossRefGoogle Scholar
  13. 13.
    Macfarlane, A.R.W., Dunn, M.J., Juddoo, M., Masri, A.R.: Stabilisation of turbulent auto-igniting dimethyl ether jet flames issuing into a hot vitiated coflow. Proc. Combust. Inst. 36(2), 1661–1668 (2017).  https://doi.org/10.1016/j.proci.2016.08.028 CrossRefGoogle Scholar
  14. 14.
    Cabra, R., Chen, J.Y., Dibble, R.W., Karpetis, A.N., Barlow, R.S.: Lifted methane-air jet flames in a vitiated coflow. Combust. Flame 143(4), 491–506 (2005).  https://doi.org/10.1016/j.combustflame.2005.08.019 CrossRefGoogle Scholar
  15. 15.
    Oldenhof, E., Tummers, M.J., van Veen, E.H., Roekaerts, D.J.E.M.: Ignition kernel formation and lift-off behaviour of jet-in-hot-coflow flames. Combust. Flame 157 (6), 1167–1178 (2010).  https://doi.org/10.1016/j.combustflame.2010.01.002 CrossRefGoogle Scholar
  16. 16.
    Medwell, P.R., Dally, B.B.: Experimental Observation of Lifted Flames in a Heated and Diluted Coflow. Energy Fuels 26(9), 5519–5527 (2012).  https://doi.org/10.1021/ef301029u CrossRefGoogle Scholar
  17. 17.
    Arndt, C.M., Schießl, R., Gounder, J.D., Meier, W., Aigner, M.: Flame stabilization and auto-ignition of pulsed methane jets in a hot coflow: influence of temperature. Proc. Combust. Inst. 34(1), 1483–1490 (2013).  https://doi.org/10.1016/j.proci.2012.05.082 CrossRefGoogle Scholar
  18. 18.
    Eitel, F., Pareja, J., Geyer, D., Johchi, A., Michel, F., Elsäßer, W., Dreizler, A.: A novel plasma test rig for auto-ignition studies of turbulent non-premixed flows. Exp. Fluids 56, 186 (2015).  https://doi.org/10.1007/s00348-015-2059-7 CrossRefGoogle Scholar
  19. 19.
    Evans, M.J., Medwell, P.R., Wu, H., Stagni, A., Ihme, M.: Classification and lift-off height prediction of non-premixed MILD and autoignitive flames. Proc. Combust. Inst. 36(3), 4297–4304 (2017).  https://doi.org/10.1016/j.proci.2016.06.013 CrossRefGoogle Scholar
  20. 20.
    Oldenhof, E., Tummers, M.J., van Veen, E.H., Roekaerts, D.J.E.M.: Role of entrainment in the stabilisation of jet-in-hot-coflow flames. Combust. Flame 158(8), 1553–1563 (2011).  https://doi.org/10.1016/j.combustflame.2010.12.018 CrossRefGoogle Scholar
  21. 21.
    Papageorge, M.J., Arndt, C., Fuest, F., Meier, W., Sutton, J.A.: High-speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto-igniting in high-temperature, vitiated co-flows. Exp. Fluids 55(7), 1763 (2014).  https://doi.org/10.1007/S00348-014-1763-Z CrossRefGoogle Scholar
  22. 22.
    Meier, W., Boxx, I., Arndt, C., Gamba, M., Clemens, N.: Investigation of auto-ignition of a pulsed methane jet in vitiated air using high-speed imaging techniques. J. Eng. Gas Turbines Power 133(2), 021504 (2011).  https://doi.org/10.1115/1.4002014 CrossRefGoogle Scholar
  23. 23.
    Oldenhof, E., Tummers, M.J., van Veen, E.H., Roekaerts, D.J.E.M.: Transient response of the Delft jet-in-hot coflow flames. Combust. Flame 159(2), 697–706 (2012).  https://doi.org/10.1016/j.combustflame.2011.08.001 CrossRefGoogle Scholar
  24. 24.
    Arndt, C.M., Papageorge, M.J., Fuest, F., Sutton, J.A., Meier, W., Aigner, M.: The role of temperature, mixture fraction, and scalar dissipation rate on transient methane injection and auto-ignition in a jet in hot coflow burner. Combust. Flame 167, 60–71 (2016).  https://doi.org/10.1016/j.combustflame.2016.02.027 CrossRefGoogle Scholar
  25. 25.
    Eitel, F., Pareja, J., Johchi, A., Böhm, B., Geyer, D., Dreizler, A.: Temporal evolution of auto-ignition of ethylene and methane jets propagating into a turbulent hot air co-flow vitiated with NOx. Combust. Flame 177, 193–206 (2017).  https://doi.org/10.1016/j.combustflame.2016.12.009 CrossRefGoogle Scholar
  26. 26.
    Pareja, J., Johchi, A., Li, T., Dreizler, A., Böhm, B.: A study of the spatial and temporal evolution of auto-ignition kernels using time-resolved tomographic OH-LIF. Proc. Combust. Inst.  https://doi.org/10.1016/j.proci.2018.06.028 (2018)
  27. 27.
    Arndt, C.M., Papageorge, M.J., Fuest, F., Sutton, J.A., Meier, W.: Experimental investigation of the auto-ignition of a transient propane jet-in-hot-coflow. Proc. Combust. Inst.  https://doi.org/10.1016/j.proci.2018.06.195 (2018)
  28. 28.
    Mastorakos, E.: Ignition of turbulent non-premixed flames. Prog. Energy Combust. Sci. 35(1), 57–97 (2009).  https://doi.org/10.1016/j.pecs.2008.07.002 CrossRefGoogle Scholar
  29. 29.
    Myhrvold, T., Ertesvag, I.S., Gran, I.R., Cabra, R.: A numerical investigation of a lifted H2/N2 turbulent jet flame in a vitiated coflow. Combust. Sci. Technol. 178 (6), 1001–1030 (2006).  https://doi.org/10.1080/00102200500270106 CrossRefGoogle Scholar
  30. 30.
    De, A., Oldenhof, E., Sathiah, P., Roekaerts, D.: Numerical simulation of Delft-Jet-in-Hot-Coflow (DJHC) flames using the eddy dissipation concept model for turbulence–chemistry interaction. Flow Turbul. Combust. 87(4), 537–567 (2011).  https://doi.org/10.1007/s10494-011-9337-0 CrossRefzbMATHGoogle Scholar
  31. 31.
    Masri, A.R., Cao, R., Pope, S.B., Goldin, G.M.: PDF calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow. Combust. Theory Model. 8(1), 1–22 (2004).  https://doi.org/10.1088/1364-7830/8/1/001 CrossRefGoogle Scholar
  32. 32.
    Gordon, R.L., Masri, A.R., Pope, S.B., Goldin, G.M.: A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow. Combust. Theory Model. 11(3), 351–376 (2007).  https://doi.org/10.1080/13647830600903472 CrossRefzbMATHGoogle Scholar
  33. 33.
    Navarro-Martinez, S., Kronenburg, A.: LES-CMC simulations of a lifted methane flame. Proc. ASME Turbo Expo 32 (1), 1509–1516 (2009).  https://doi.org/10.1016/j.proci.2008.06.178 CrossRefGoogle Scholar
  34. 34.
    Duwig, C., Fuchs, L.: Large Eddy simulation of a H2/N2 lifted flame in a vitiated co-flow. Combust. Sci. Technol. 180(3), 453–480 (2008).  https://doi.org/10.1080/00102200701741327 CrossRefGoogle Scholar
  35. 35.
    Schulz, O., Jaravel, T., Poinsot, T., Cuenot, B., Noiray, N.: A criterion to distinguish autoignition and propagation applied to a lifted methane–air jet flame. Proc. Combust. Inst. 36(2), 1637–1644 (2017).  https://doi.org/10.1016/j.proci.2016.08.022 CrossRefGoogle Scholar
  36. 36.
    Roy, C., Oberkampf, W.: A complete framework for verification, validation, and uncertainty quantification in scientific computing. In: 48th AIAA Aerospace Sciences Meeting (2010)Google Scholar
  37. 37.
    Morley, C: Gaseq—a chemical equilibrium program for Windows. Version 0.79, http://www.gaseq.co.uk/ (2005)
  38. 38.
    Prucker, S., Meier, W., Stricker, W.: A flat flame burner as calibration source for combustion research: Temperatures and species concentrations of premixed H2/air flames. Rev. Sci. Instrum. 65(9), 2908–2911 (1994).  https://doi.org/10.1063/1.1144637 CrossRefGoogle Scholar
  39. 39.
    Arndt, C.M.: Entwicklung und Anwendung von Hochgeschwindigkeits-Lasermesstechnik zur Untersuchung von Selbstzündung. Dissertation, Universität Stuttgart (2017)Google Scholar
  40. 40.
    Goodwin, D.G., Moffat, H.K., Speth, R.L.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.4.0, https://www.cantera.org (2018)
  41. 41.
    Fiala, T., Sattelmayer, T.: Nonpremixed counterflow flames: scaling rules for batch simulations. J. Combust. 2014, Article ID 484372 (2014).  https://doi.org/10.1155/2014/484372 CrossRefGoogle Scholar
  42. 42.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C. Jr., Lissianski, V.V., Qin, Z.: GRI 3.0. http://www.me.berkeley.edu/gri_mech/
  43. 43.
    Stahl, G., Warnatz, J.: Numerical investigation of time-dependent properties and extinction of strained methane- and propane-air flamelets. Combust. Flame 85(3–4), 285–299 (1991).  https://doi.org/10.1016/0010-2180(91)90134-W CrossRefGoogle Scholar
  44. 44.
    Gerlinger, P., Nold, K., Aigner, M.: Influence of reaction mechanisms, grid spacing, and inflow conditions on the numerical simulation of lifted supersonic flames. Int. J. Numer. Methods Fluids 62(12), 1357–1380 (2010).  https://doi.org/10.1002/fld.2076 CrossRefzbMATHGoogle Scholar
  45. 45.
    KintechLab: Chemical Workbench 4.1 (2014)Google Scholar
  46. 46.
    Sadanandan, R., Stöhr, M., Meier, W.: Simultaneous OH-PLIF and PIV measurements in a gas turbine model combustor. Appl. Phys. B 90(3–4), 609–618 (2008).  https://doi.org/10.1007/s00340-007-2928-8 CrossRefGoogle Scholar
  47. 47.
    Hilbert, R., Thévenin, D.: Autoignition of turbulent non-premixed flames investigated using direct numerical simulation. Combust. Flame 128(1–2), 22–37 (2002).  https://doi.org/10.1016/S0010-2180(01)00330-3 CrossRefzbMATHGoogle Scholar
  48. 48.
    Warnatz, J., Maas, U., Dibble, R.W.: Combustion—Physical and Chemical Fundamentals, Modeling und Simulation, Experiments, Pollutant Formation, 4th edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  49. 49.
    Foley, C.W., Chterev, I., Seitzman, J., Lieuwen, T.: High resolution particle image velocimetry and CH-PLIF measurements and analysis of a shear layer stabilized flame. J. Eng. Gas Turbines Power 138(3), 031603–031603-031613 (2015).  https://doi.org/10.1115/1.4031367 CrossRefGoogle Scholar
  50. 50.
    Foley, C., Chterev, I., Noble, B., Seitzman, J., Lieuwen, T.: Shear layer flame stabilization sensitivities in a swirling flow. Int. J. Spray Combust. Dyn. 9 (1), 3–18 (2016).  https://doi.org/10.1177/1756827716653426 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.German Aerospace Center (DLR)Institute of Combustion TechnologyStuttgartGermany

Personalised recommendations