Advertisement

Flow, Turbulence and Combustion

, Volume 102, Issue 2, pp 313–330 | Cite as

Flow Visualization Study of Stationary Fire Whirls just Downwind of Meter-Scale Turbulent Flames

  • Masahiko ShinoharaEmail author
  • Sanae Matsushima
Article

Abstract

Laboratory experiments were conducted to determine whether stationary fire whirls just downwind of a meter-scale turbulent flame are the lowest part of the counter-rotating vortex pair (CVP) of the plume from the flame. Plumes from a turbulent pool fire and air flow around the fire were visualized. There are two types of stationary fire whirls: those that contain flames (FWflame) and those that do not (FWair). We determined that FWairis most likely the lowest part of the CVP and that FWflame is most likely generated by flames entering the lowest part of the CVP, swirling and increasing in length. FWairs and FWflames form alternately at the same location just downwind of the fuel pools. During the period when stationary fire whirls occur, the plume tilt angle from the vertical direction is smaller, and the variation in the plume tilt angle and flame trailing length is greater compared to all other periods. Flow visualization also showed that the characteristic semi-circular space (SCS) partly surrounded by the flame trailing downwind from both edges of the fuel pools is generated by the swirling wind of FWairs inside the SCS.

Keywords

Fire whirl Counter-rotating vortex pair Plume Pool fire 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10494_2018_9987_MOESM1_ESM.mpg (8.8 mb)
captions of movies (MPG 8.76 MB)
10494_2018_9987_MOESM2_ESM.mpg (9.5 mb)
captions of movies (MPG 9.51 MB)
10494_2018_9987_MOESM3_ESM.mpg (9.6 mb)
captions of movies (MPG 9.64 MB)
10494_2018_9987_MOESM4_ESM.mpg (5.2 mb)
captions of movies (MPG 5.20 MB)

References

  1. 1.
    Graham, H.E.: Fire whirlwinds. Bull. Am. Meteorol. Soc. 36(3), 99–103 (1955)CrossRefGoogle Scholar
  2. 2.
    USDA Forest Service: Accident prevention analysis report Indians fire, Los Padres National Forest, June 11, 2008. Pacific Southwest Region (2008)Google Scholar
  3. 3.
    Pirsko, R., Sergius, L.M., Hickerson, C.W.: Causes and behavior of a tornadic fire-whirlwind. U. S. Forest Service Research Note PSW-61. Southwest Forest & Range Experiment Station. USDA Forest Service (1965)Google Scholar
  4. 4.
    Terada, T.: Whirlwinds on September 1–2. The Imperial Earthquake Investigation Committee. Reports of the Imperial Earthquake Investigation Committee 100, 185–227 (in Japanese) (1925)Google Scholar
  5. 5.
    Ebert, C.H.V.: Ebert, Hamburg’s firestorm weather. NFPA Q. 56, 253–260 (1963)Google Scholar
  6. 6.
    Forthofer, J.M., Goodrick, S.L: Review of vortices in wildland fire. J. Combust. 984363, 1–14 (2011)CrossRefGoogle Scholar
  7. 7.
    Countryman, C.M.: Fire whirls... why, when, and where. USDA Forest Service. Pacific Southwest Forest and Range Experiment Station (1971)Google Scholar
  8. 8.
    Emmons, H.W., Ying, S.J.: The fire whirl. In: 111th Symposium (International) on Combustion, pp 475–488 (1967)Google Scholar
  9. 9.
    Zhou, R., Wu, Z: Fire whirls due to surrounding flame sources and the influence of the rotation speed on the flame height. J. Fluid Mech. 583, 313–345 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hayashi, Y., Kuwana, K., Dobashi, R.: Influence of vortex structure on fire whirl behavior. In: Fire Safety Science-Proceedings 10th International Symposium, pp 671–679 (2011)Google Scholar
  11. 11.
    Kuwana, K., Sekimoto, K., Minami, T., Tashiro, T., Saito, K.: Scale-model experiments of moving fire whirl over a line fire. Proc. Combust. Inst. 34(2), 2625–2631 (2013)CrossRefGoogle Scholar
  12. 12.
    Lei, J., Liu, N.: Flame precession of fire whirls: a further experimental study. Fire Saf. J. 79, 1–9 (2016)CrossRefGoogle Scholar
  13. 13.
    Wang, P., Liu, N, Hartl, K, Smits, A: Measurement of the flow field of fire whirl. Fire Technol. 52, 263–272 (2016)CrossRefGoogle Scholar
  14. 14.
    Wang, P., Liu, N., Bai, Y., Zhang, L., Satoh, K., Liu, X.: An experimental study on thermal radiation of fire whirl. Int. J. Wildland Fire 26, 693–705 (2017)CrossRefGoogle Scholar
  15. 15.
    Pinto, C., Viegas, D., Almeida, M., Raposo, J.: Fire whirls in forest fires: an experimental analysis. Fire Saf. J. 87, 37–48 (2017)CrossRefGoogle Scholar
  16. 16.
    Satoh, K., Yang, K.T.: Simulations of swirling fires controlled by channeled self-generated entrainment flows. In: Fire Safety Science - Proceedings of the 5th International Symposium, pp 201–212 (1997)Google Scholar
  17. 17.
    Battaglia, F., McGrattan, K.B., Rehm, G.R., Baum, H.R.: Simulating fire whirls. Combust. Theor. Model. 4, 123–138 (2000)CrossRefzbMATHGoogle Scholar
  18. 18.
    Chow, W.K., He, Z., Gao, Y: Internal fire whirls in a vertical shaft. J. Fire Sci. 29, 71–92 (2011)CrossRefGoogle Scholar
  19. 19.
    Satoh, K., Liu, N., Xie, X., Zhou, K., Chen, H., Wu, J., Lei, J., Lozano, J.S.: CFD study of huge oil depot fires - Generation of fire merging and fire whirl in arrayed oil tanks. In: Fire Safety Science - Proceedings of the 10th International Symposium, pp 693–705 (2011)Google Scholar
  20. 20.
    Battaglia, F., Rehm, R.G., Baum, H.R: The fluid mechanics of fire whirls: an inviscid model. Phys. Fluids 12, 2859–2867 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Chuah, K.H., Kushida, G.: The prediction of flame heights and flame shapes of small fire whirl. Proc. Combust. Inst. 31, 2599–2606 (2007)CrossRefGoogle Scholar
  22. 22.
    Chuah, K.H., Kuwana, K., Saito, K.: Modeling a fire whirl generated over a 5-cm-diameter methanol pool fire. Combust. Flame 156, 1828–1833 (2009)CrossRefGoogle Scholar
  23. 23.
    Klimenko, A.Y., Williams, F.A.: On the flame length in firewhirls with strong vorticity. Combust. Flame 160, 335–339 (2013)CrossRefGoogle Scholar
  24. 24.
    Countryman, C.M.: Project flambeau: an investigation of mass fire (1964–1967) Final report - Volume 1. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station (1969)Google Scholar
  25. 25.
    Adams, J.S., Williams, D.W., Tregellas-Williams, J.: Air velocity, temperature, and radiant-heat measurements within and around a large free-burning fire. In: Proceedings of the 14th International Symposium on Combustion, pp 1045–1052. The Combustion Institute (1972)Google Scholar
  26. 26.
    Church, C.R., Snow, J.T., Dessens, J.: Intense atmospheric vortices associated with a 1000 MW fire. Bull. Am. Meteorol. Soc. 61, 682–694 (1980)CrossRefGoogle Scholar
  27. 27.
    Haines, D.A., Smith, M.C.: Three types of horizontal vortices observed in wildland mass and crown fires. J. Clim. Appl. Meteorol. 26, 1624–1637 (1987)CrossRefGoogle Scholar
  28. 28.
    Banta, R.M., Olivier, L.D., Holloway, E.T., Kropfli, R.A., Bartram, B.W., Cupp, R.E., Post, M.J.: Smoke column observations from two forest fires using Doppler lidar and Doppler radar. J. Appl. Meteorol. 31, 1328–1349 (1992)CrossRefGoogle Scholar
  29. 29.
    McRae, D.J., Flannigan, M.D.: Development of large vortices on prescribed fires. Can. J. For. Res. 20, 1878–1887 (1990)CrossRefGoogle Scholar
  30. 30.
    Soma, S., Saito, K.: Reconstruction of fire whirls using scale models. Combust. Flame 86, 269–284 (1991)CrossRefGoogle Scholar
  31. 31.
    Kuwana, K., Sekimoto, K, Saito, K, Williams, F. A.: Scaling fire whirls. Fire Saf. J. 43, 252–257 (2008)CrossRefGoogle Scholar
  32. 32.
    Shinohara, M., Matsushima, S.: Formation of fire whirls: experimental verification that a counter-rotating vortex pair is a possible origin of fire whirls. Fire Saf. J. 54, 144–153 (2012)CrossRefGoogle Scholar
  33. 33.
    Fric, T.F., Roshko, A.: Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 1–47 (1994)CrossRefGoogle Scholar
  34. 34.
    Kelso, R.M., Lim, T.T., Perry, A.E.: An experimental study of round jets in crossfow. J. Fluid Mech. 306, 111–144 (1996)CrossRefGoogle Scholar
  35. 35.
    Marzouk, Y.M., Ghoniem, A.F.: Vorticity structure and evolution in a transverse jet. J. Fluid Mech. 575, 267–305 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Haines, D.A., Smith, M.C.: Wind tunnel generation of horizontal roll vortices over a differentially heated surface. Nature 306, 351–352 (1983)CrossRefGoogle Scholar
  37. 37.
    Cunningham, P., Goodrick, S.L, Hussaini, M.Y., Linn, R.R.: Coherent vortical structures in numerical simulations of buoyant plumes from wildland fires. Int. J. Wildland Fire 14, 61–75 (2005)CrossRefGoogle Scholar
  38. 38.
    Shinohara, M., Matsushima, S.: Laboratory experiments on the effects of wind direction on behavior of fire whirls downwind of fire. In: 11th Symposium on Fire and Forest Meteorology, 6.6 (2015)Google Scholar
  39. 39.
    Goldstein, R.J.: Fluid Mechanics Measurements. Hemisphere Publishing Corporation, Washington (1983)Google Scholar
  40. 40.
    Welker, J.R., Sliepcevich, C.M.: Bending of wind-blown flames from liquid pools. Fire Technol. 2, 127–135 (1966)CrossRefGoogle Scholar
  41. 41.
    Hu, L., Liu, S., Ris, J. L., Wu, L.: A new mathematical quantification of wind-blown flame tilt angle of hydrocarbon pool fires with a new global correlation model. Fuel 106, 730–736 (2013)CrossRefGoogle Scholar
  42. 42.
    Blinov, V.I., Khudyakov, G.N.: Diffusion burning of liquids. Izdatel’stvo Akdademii Nauk SSSR, Moscow, Translated by Research Information Service, Div. of Pergamon International Corp. N.Y. (1961)Google Scholar
  43. 43.
    Thurston, W., Tory, K.J., Kepert, J.D., Fawcett, R.J. B.: The effects of fire-plume dynamics on the lateral and longitudinal spread of long-range spotting. In: Proceedings of the the Research Forum at the Bushfire and Natural Hazards CRC & AFAC Conference, pp 1–9 (2015)Google Scholar
  44. 44.
    Jiang, P., Lu, S.: Pool fire mass burning rate and flame tilt angle under crosswind in open space. Procedia Eng. 135, 261–274 (2016)CrossRefGoogle Scholar
  45. 45.
    Hu, L., Kuang, C., Zhong, X., Ren, F., Zhang, X, Ding, H.: An experimental study on burning rate and flame tilt of optical-thin heptane pool fires in cross flows. Proc. Combust. Inst. 36, 3089–3096 (2017)CrossRefGoogle Scholar
  46. 46.
    Woods, J.A.R., Fleck, B.A., Kostiuk, L.W.: Effects of transverse air flow on burning rates of rectangular methanol pool fires. Combust. Flame 146, 379–390 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.National Research Institute of Fire and DisasterTokyoJapan

Personalised recommendations