Advertisement

Flow, Turbulence and Combustion

, Volume 102, Issue 3, pp 757–773 | Cite as

Flame Structure Analysis and Flamelet/Progress Variable Modelling of DME/Air Flames with Different Degrees of Premixing

  • Sandra HartlEmail author
  • Danny Messig
  • Frederik Fuest
  • Christian Hasse
Article

Abstract

Laminar dimethyl ether (DME) coflow jet flames, defined by different levels of partial premixing in the fuel stream, provide canonical test cases for studying conditions in between perfectly premixed and non-premixed characteristics. This work investigates the structure of DME/air flames and the evaluation of suitable flamelet modeling approaches. Three laminar, partially premixed DME/air flames are studied using fully resolved numerical simulations and the flamelet/progress variable (FPV) approach. The flame structure of the partially premixed DME/air flames is discussed and selected slices are compared to each other as well as to Raman/Rayleigh data. Overall, the experimental data is well predicted and the local flame structure is represented by the fully resolved simulations. In the context of the FPV approach, an a priori analysis of the underlying tabulated manifold is carried out. Lookup tables based on strained counterflow flames were identified as the most suitable candidate for the fully coupled FPV simulations of all three partially premixed DME/air flames. The FPV results are further compared a posteriori to the fully resolved simulation data. The flame structure of the partially premixed DME/air flames was reproduced and good results were obtained for the temperature and the species mass fractions. This numerical investigation contributes to the understanding of local flame structures in partially premixed DME/air flames and has the potential to support model selection in complex combustion processes.

Keywords

DME Partial premixing Flamelet/progress variable Local flame structure 

Notes

Acknowledgments

The authors kindly acknowledge the financial support by the Federal Ministry of Food and Agriculture (project number 22008613). C. Hasse and S. Hartl acknowledge support by the German Research Foundation in the collaborative project “Multi Regime combustion under technically relevant conditions” (grant numbers HA 4367/5-1).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Fleisch, T., Basu, A., Sills, R.: Introduction and advancement of a new clean global fuel: The status of DME developments in china and beyond. J. Nat. Gas. Sci. Eng. 9, 94–107 (2012).  https://doi.org/10.1016/j.jngse.2012.05.012. http://www.sciencedirect.com/science/article/pii/S1875510012000650 Google Scholar
  2. 2.
    International workshop on measurement and computation of turbulent flames, http://www.sandia.gov/TNF/abstract.html (2014)
  3. 3.
    Fuest, F., Barlow, R.S., Chen, J.Y., Dreizler, A.: Raman/Rayleigh scattering and CO-LIF measurements in laminar and turbulent jet flames of dimethyl ether. Combust. Flame 159(8), 2533–2562 (2012).  https://doi.org/10.1016/j.combustflame.2011.11.001. http://www.sciencedirect.com/science/article/pii/S0010218011003488 Google Scholar
  4. 4.
    Bhagatwala, A., Luo, Z., Shen, H., Sutton, J.A., Lu, T., Chen, J.H.: Numerical and experimental investigation of turbulent dme jet flames. Proc. Combust. Inst. 35(2), 1157–1166 (2015).  https://doi.org/10.1016/j.proci.2014.05.147. http://www.sciencedirect.com/science/article/pii/S1540748914001503 Google Scholar
  5. 5.
    Coriton, B., Im, S.K., Gamba, M., Frank, J.: Flow field and scalar measurements in a series of turbulent partially-premixed dimethyl ether/air jet flames. Combust. Flame 180, 40–52 (2017).  https://doi.org/10.1016/j.combustflame.2017.02.014 Google Scholar
  6. 6.
    Fuest, F., Barlow, R.S., Magnotti, G., Dreizler, A., Ekoto, I.W., Sutton, J.A.: Quantitative acetylene measurements in laminar and turbulent flames using 1D Raman/Rayleigh scattering. Combust. Flame 162(5), 2248–2255 (2015).  https://doi.org/10.1016/j.combustflame.2015.01.021. http://www.sciencedirect.com/science/article/pii/S0010218015000334 Google Scholar
  7. 7.
    Fuest, F., Barlow, R.S., Magnotti, G., Sutton, J.A.: Scalar dissipation rates in a turbulent partially-premixed dimethyl ether/air jet flame. Combust. Flame 188, 41–65 (2018).  https://doi.org/10.1016/j.combustflame.2017.09.020. http://www.sciencedirect.com/science/article/pii/S0010218017303516 Google Scholar
  8. 8.
    Gabet, K.N., Shen, H., Patton, R.A., Fuest, F., Sutton, J.A.: A comparison of turbulent dimethyl ether and methane non-premixed flame structure. Proc. Combust. Inst. 34(1), 1447–1454 (2013).  https://doi.org/10.1016/j.proci.2012.06.183. http://www.sciencedirect.com/science/article/pii/S154074891200291X Google Scholar
  9. 9.
    Hampp, F., Lindstedt, R.: Quantification of combustion regime transitions in premixed turbulent dme flames. Combust. Flame 182, 248–268 (2017).  https://doi.org/10.1016/j.combustflame.2017.04.006. http://www.sciencedirect.com/science/article/pii/S0010218017301335 Google Scholar
  10. 10.
    Coriton, B., Zendehdel, M., Ukai, S., Kronenburg, A., Stein, O.T., Im, S.K., Gamba, M., Frank, J.H.: Imaging measurements and LES-CMC modeling of a partially-premixed turbulent dimethyl ether/air jet flame. Proc. Combust. Inst. 35(2), 1251–1258 (2015).  https://doi.org/10.1016/j.proci.2014.06.042. http://www.sciencedirect.com/science/article/pii/S1540748914002004 Google Scholar
  11. 11.
    Kronenburg, A., Stein, O.: LES-CMC of a partially premixed, turbulent dimethyl ether jet diffusion flame. Flow. Turb. Combust. 98(3), 803–816 (2017).  https://doi.org/10.1007/s10494-016-9788-4 Google Scholar
  12. 12.
    Minamoto, Y., Chen, J.H.: DNS of a turbulent lifted DME jet flame. Combust Flame 169, 38–50 (2016).  https://doi.org/10.1016/j.combustflame.2016.04.007. http://www.sciencedirect.com/science/article/pii/S0010218016300542 Google Scholar
  13. 13.
    Popp, S., Hunger, F., Hartl, S., Messig, D., Coriton, B., Frank, J.H., Fuest, F., Hasse, C.: LES flamelet-progress variable modeling and measurements of a turbulent partially-premixed dimethyl ether jet flame. Combust. Flame 162(8), 3016–3029 (2015).  https://doi.org/10.1016/j.combustflame.2015.05.004. http://www.sciencedirect.com/science/article/pii/S001021801500142X Google Scholar
  14. 14.
    You, J., Yang, Y., Pope, S.B.: Effects of molecular transport in LES/PDF of piloted turbulent dimethyl ether/air jet flames. Combust. Flame 176, 451–461 (2017).  https://doi.org/10.1016/j.combustflame.2016.11.007. http://www.sciencedirect.com/science/article/pii/S0010218016303479 Google Scholar
  15. 15.
    Knudsen, E., Pitsch, H.: A general flamelet transformation useful for distinguishing between premixed and non-premixed modes of combustion. Combust. Flame 156(3), 678–696 (2009).  https://doi.org/10.1016/j.combustflame.2008.10.021. http://www.sciencedirect.com/science/article/pii/S0010218008003246 Google Scholar
  16. 16.
    Knudsen, E., Pitsch, H.: Capabilities and limitations of multi-regime flamelet combustion models. Combust. Flame 159(1), 242–264 (2012).  https://doi.org/10.1016/j.combustflame.2011.05.025. http://www.sciencedirect.com/science/article/pii/S0010218011001982 Google Scholar
  17. 17.
    Wu, H., See, Y.C., Wang, Q., Ihme, M.: A pareto-efficient combustion framework with submodel assignment for predicting complex flame configurations. Combust. Flame 162(11), 4208–4230 (2015).  https://doi.org/10.1016/j.combustflame.2015.06.021. http://www.sciencedirect.com/science/article/pii/S0010218015002564 Google Scholar
  18. 18.
    Hartl, S., Geyer, D., Dreizler, A., Magnotti, G., Barlow, R.S., Hasse, C.: Regime identification from Raman/Rayleigh line measurements in partially premixed flames. Combust. Flame 189, 126–141 (2018).  https://doi.org/10.1016/j.combustflame.2017.10.024. https://www.sciencedirect.com/science/article/pii/S0010218017304212 Google Scholar
  19. 19.
    Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004).  https://doi.org/10.1017/S0022112004008213 MathSciNetzbMATHGoogle Scholar
  20. 20.
    Domingo, P., Vervisch, L., Réveillon, J.: DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air. Combust. Flame 140(3), 172–195 (2005).  https://doi.org/10.1016/j.combustflame.2004.11.006. http://www.sciencedirect.com/science/article/pii/S0010218004002342 Google Scholar
  21. 21.
    Ihme, M., See, Y.C.: Prediction of autoignition in a lifted methane/air flame using an unsteady flamelet/progress variable model. Combust. Flame 157(10), 1850–1862 (2010).  https://doi.org/10.1016/j.combustflame.2010.07.015 Google Scholar
  22. 22.
    See, Y.C., Ihme, M.: Large eddy simulation of a partially-premixed gas turbine model combustor. Proc. Combust. Inst. 35(2), 1225–1234 (2015).  https://doi.org/10.1016/j.proci.2014.08.006. http://www.sciencedirect.com/science/article/pii/S1540748914003903 Google Scholar
  23. 23.
    Vreman, A., Albrecht, B., van Oijen, J., de Goey, L., Bastiaans, R.: Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F. Combust. Flame 153(3), 394–416 (2008).  https://doi.org/10.1016/j.combustflame.2008.01.009. http://www.sciencedirect.com/science/article/pii/S0010218008000667 Google Scholar
  24. 24.
    Garten, B., Hunger, F., Messig, D., Stelzner, B., Trimis, D., Hasse, C.: Detailed radiation modeling of a partial-oxidation flame. IJTS 87, 68–84 (2015).  https://doi.org/10.1016/j.ijthermalsci.2014.07.022. http://www.sciencedirect.com/science/article/pii/S1290072914002385 Google Scholar
  25. 25.
    Hunger, F., Zulkifli, M.F., Williams, B.A.O., Beyrau, F., Hasse, C.: A combined experimental and numerical study of laminar and turbulent non-piloted oxy-fuel jet flames using a direct comparison of the rayleigh signal. Flow. Turb. Combust. 97(1), 231–262 (2016).  https://doi.org/10.1007/s10494-015-9681-6 Google Scholar
  26. 26.
    Messig, D., Hunger, F., Keller, J., Hasse, C.: Evaluation of radiation modeling approaches for non-premixed flamelets considering a laminar methane air flame. Combust. Flame 160(2), 251–264 (2013).  https://doi.org/10.1016/j.combustflame.2012.10.009. http://www.sciencedirect.com/science/article/pii/S0010218012002970 Google Scholar
  27. 27.
    Zhao, Z., Chaos, M., Kazakov, A., Dryer, F.L.: Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether. IJCK 40(1), 1–18 (2008).  https://doi.org/10.1002/kin.20285 Google Scholar
  28. 28.
    Barlow, R., Meares, S., Magnotti, G., Cutcher, H., Masri, A.: Local extinction and near-field structure in piloted turbulent CH4/air jet flames with inhomogeneous inlets. Combust. Flame 162(10), 3516–3540 (2015).  https://doi.org/10.1016/j.combustame.2015.06.009. http://www.sciencedirect.com/science/article/pii/S001021801500190X Google Scholar
  29. 29.
    Barlow, R.S., Dunn, M.J., Sweeney, M.S., Hochgreb, S.: Effects of preferential transport in turbulent bluff-body-stabilized lean premixed CH4/air flames. Combust. Flame 159(8), 2563–2575 (2012).  https://doi.org/10.1016/j.combustflame.2011.11.013. http://www.sciencedirect.com/science/article/pii/S0010218011003877 Google Scholar
  30. 30.
    Magnotti, G., Barlow, R.S.: Effects of high shear on the structure and thickness of turbulent premixed methane/air flames stabilized on a bluff-body burner. Combust. Flame 162(1), 100–114 (2015).  https://doi.org/10.1016/j.combustflame.2014.06.015. http://www.sciencedirect.com/science/article/pii/S001021801400193X Google Scholar
  31. 31.
    Poinsot, T., Veynante, D.: Theoretical and numerical combustion (2012)Google Scholar
  32. 32.
    Pitsch, H., Peters, N.: A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combust. Flame 114(1-2), 26–40 (1998).  https://doi.org/10.1016/S0010-2180(97)00278-2. http://www.sciencedirect.com/science/article/pii/S0010218097002782 Google Scholar
  33. 33.
    Hasse, C.: A Two-Dimensional Flamelet Model for Multiple Injections in Diesel Engines. Ph.D. thesis, RWTH Aachen (2004)Google Scholar
  34. 34.
    Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10(3), 319–339 (1984)Google Scholar
  35. 35.
    Fiorina, B., Mercier, R., Kuenne, G., Ketelheun, A., Avdi, A., Janicka, J., Geyer, D., Dreizler, A., Alenius, E., Duwig, C., Trisjono, P., Kleinheinz, K., Kang, S., Pitsch, H., Proch, F., Marincola, F.C., Kempf, A.: Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion. Combust. Flame 162(11), 4264–4282 (2015).  https://doi.org/10.1016/j.combustflame.2015.07.036. http://www.sciencedirect.com/science/article/pii/S0010218015002370 Google Scholar
  36. 36.
    Kee, R.J., Miller, J.A., Evans, G.H., Dixon-Lewis, G.: A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames. Proc. Combust. Inst. 22(1), 1479–1494 (1989).  https://doi.org/10.1016/S0082-0784(89)80158-4. http://www.sciencedirect.com/science/article/pii/S0082078489801584 Google Scholar
  37. 37.
    Verhoeven, L., Ramaekers, W., van Oijen, J., de Goey, L.: Modeling non-premixed laminar co-flow flames using flamelet-generated manifolds. Combustion and Flame 159(1), 230–241 (2012).  https://doi.org/10.1016/j.combustflame.2011.07.011. http://www.sciencedirect.com/science/article/pii/S0010218011002239 Google Scholar
  38. 38.
    Oijen, J.V., Goey, L.D.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161 (1), 113–137 (2000).  https://doi.org/10.1080/00102200008935814. http://www.tandfonline.com/doi/abs/10.1080/00102200008935814 Google Scholar
  39. 39.
    Gicquel, O., Darabiha, N., Thévenin, D.: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28(2), 1901–1908 (2000).  https://doi.org/10.1016/S0082-0784(00)80594-9. http://www.sciencedirect.com/science/article/pii/S0082078400805949 Google Scholar
  40. 40.
    Bilger, R., Sterner, S., Kee, R.: On reduced mechanisms for methane air combustion in nonpremixed flames. Combust. Flame 80(2), 135–149 (1990).  https://doi.org/10.1016/0010-2180(90)90122-8. http://www.sciencedirect.com/science/article/pii/0010218090901228 Google Scholar
  41. 41.
    Lu, T., Yoo, C., Chen, J., Law, C.: Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: a chemical explosive mode analysis. J. Fluid Mech. 652, 45–64 (2010).  https://doi.org/10.1017/S002211201000039X zbMATHGoogle Scholar
  42. 42.
    Shan, R., Yoo, C.S., Chen, J.H., Lu, T.: Computational diagnostics for n-heptane flames with chemical explosive mode analysis. Combust. Flame 159(10), 3119–3127 (2012).  https://doi.org/10.1016/j.combustflame.2012.05.012. http://www.sciencedirect.com/science/article/pii/S0010218012001770 Google Scholar
  43. 43.
    Dodoulas, I.A., Navarro-Martinez, S.: Analysis of extinction in a non-premixed turbulent flame using large eddy simulation and the chemical explosion mode analysis. Combust. Theor. Model. 19(1), 107–129 (2015).  https://doi.org/10.1080/13647830.2014.993713 MathSciNetGoogle Scholar
  44. 44.
    Lyra, S., Wilde, B., Kolla, H., Seitzman, J.M., Lieuwen, T.C., Chen, J.H.: Structure of hydrogen-rich transverse jets in a vitiated turbulent flow. Combust. Flame 162(4), 1234–1248 (2015).  https://doi.org/10.1016/j.combustflame.2014.10.014. http://www.sciencedirect.com/science/article/pii/S0010218014003356 Google Scholar
  45. 45.
    Domingo, P., Vervisch, L., Bray, K.: Partially premixed flamelets in LES of nonpremixed turbulent combustion. Combust. Theor. Model. 6(4), 529–551 (2002).  https://doi.org/10.1088/1364-7830/6/4/301 Google Scholar
  46. 46.
    Lamouroux, J., Ihme, M., Fiorina, B., Gicquel, O.: Tabulated chemistry approach for diluted combustion regimes with internal recirculation and heat losses. Combustion and Flame 161 (8), 2120–2136 (2014).  https://doi.org/10.1016/j.combustflame.2014.01.015. http://www.sciencedirect.com/science/article/pii/S0010218014000200 Google Scholar
  47. 47.
    Yamashita, H., Shimada, M., Takeno, T.: A numerical study on flame stability at the transition point of jet diffusion flames. Proc. Combust. Inst. 26(1), 27–34 (1996).  https://doi.org/10.1016/S0082-0784(96)80196-2. http://www.sciencedirect.com/science/article/pii/S0082078496801962 Google Scholar
  48. 48.
    Daly, C.A., Simmie, J.M., Wuermel, J., Djeballi, N., Paillard, C.: Burning velocities of dimethyl ether and air. Combust. Flame 125(4), 1329–1340 (2001).  https://doi.org/10.1016/S0010-2180(01)00249-8. http://www.sciencedirect.com/science/article/pii/S0010218001002498 Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Sandra Hartl
    • 1
    • 2
    Email author
  • Danny Messig
    • 2
  • Frederik Fuest
    • 3
  • Christian Hasse
    • 2
  1. 1.Thermodynamics and Alternative Propulsion SystemsUniversity of Applied SciencesDarmstadtGermany
  2. 2.Institute for Simulation of Reactive Thermo-Fluid SystemsDarmstadtGermany
  3. 3.LaVision GmbHGoettingenGermany

Personalised recommendations