Advertisement

Flow, Turbulence and Combustion

, Volume 102, Issue 2, pp 331–343 | Cite as

Numerical Study of the Mixing Inside a Jet Stirred Reactor using Large Eddy Simulations

  • Ghazaleh EsmaeelzadeEmail author
  • Kai Moshammer
  • Ravi Fernandes
  • Detlev Markus
  • Holger Grosshans
Article

Abstract

Jet Stirred Reactors (JSR) have been extensively used in the last decades to investigate gas phase chemical kinetics. Inside the JSR efficient mixing through turbulent jets is required in order to obtain homogeneous compositions. One of the best ways to achieve the mixing of the gas phase is to use turbulent jets obtained from nozzles. In our research, Computational Fluid Dynamics (CFD) simulations were applied to predict the mixing and flow field characteristics inside a spherical reactor. Large-Eddy Simulations (LES) were used to compute the residence time distribution and the mixing inside the JSR for different flow rates. Our simulations concern a non-reacting mixture at ambient conditions. The results agree well with tracer-decay data, experimentally measured using laser absorption spectroscopy, and with a CFD analysis of the mixing rate based on the Reynolds-Averaged Navier-Stokes (RANS) approach. Our simulations enable us to provide detailed information concerning the instantaneous turbulent structures which effectuate mixing inside the JSR.

Keywords

Computational fluid dynamic Jet stirred reactor Large eddy simulations Residence time study 

Notes

Funding Information

This work was partially supported by the INNO INDIGO programme BiofCFD.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Herbinet, O., Dayma, G.: Cleaner Combustion. In: Jet-Stirred Reactors. Springer, London (2013)Google Scholar
  2. 2.
    Hanson, R., Davidson, D.: Recent advances in laser absorption and shock tube methods for studies of combustion chemistry. Prog. Energy Combust. Sci. 44, 103–114 (2014)CrossRefGoogle Scholar
  3. 3.
    Dryer, F.L., Haas, F.M., Santner, J., Farouk, T.I., Chaos, M.: Interpreting chemical kinetics from complex reaction–advection–diffusion systems: Modeling of flow reactors and related experiments. Prog. Energy Combust. Sci. 44, 19–39 (2014)CrossRefGoogle Scholar
  4. 4.
    Sung, C. -J., Curran, H.J.: Using rapid compression machines for chemical kinetics studies. Prog. Energy Combust. Sci. 44, 1–18 (2014)CrossRefGoogle Scholar
  5. 5.
    Goldsborough, S., Hochgreb, S., Vanhove, G., Wooldridge, M., Curran, H., Sung, C.: Advances in rapid compression machine studies of low-and intermediate-temperature autoignition phenomena. Prog. Energy Combust. Sci. 63, 1–78 (2017)CrossRefGoogle Scholar
  6. 6.
    Moshammer, K., Jasper, A.W., Popolan-Vaida, D., Lucassen, A., Diévart, P., Selim, H., Eskola, A.J., Taatjes, C.A., Leone, S.R., Sarathy, S.M., Ju, Y., Dagaut, P., Kohse-Höinghaus, K., Hansen, N.: Detection and Identification of the keto-hydroperoxide (HOOCH2OCHO) and other intermediates during low-temperature oxidation of dimethyl ether. J. Phys. Chem. A 119(28), 7361–7374 (2015)CrossRefGoogle Scholar
  7. 7.
    Fogler, H.S.: Elements of Chemical Reaction Engineering. Prentice-Hall International, London (1999)Google Scholar
  8. 8.
    David, R., Matras, D.: Règies de construction et d’extrapolation des réacteurs auto-agités par jets gazeux. Can. J. Chem. Eng. 53(3), 297–300 (1975)CrossRefGoogle Scholar
  9. 9.
    Dagaut, P., Cathonnet, M., Rouan, J.P., Foulatier, R., Quilgars, A., Boettner, J.C., Gaillard, F., James, H.: A jet-stirred reactor for kinetic studies of homogeneous gas-phase reactions at pressures up to ten atmospheres (≈ 1 MPa). J. Phys. E: Sci. Instrum. 19(3), 207 (1986)CrossRefGoogle Scholar
  10. 10.
    Rota, R., Bonini, F., Servida, A., Morbidelli, M., Carra, S.: Validation and updating of detailed kinetic mechanisms: the case of ethane oxidation. Ind. Eng. Chem. 33(11), 2540–2553 (1994)CrossRefGoogle Scholar
  11. 11.
    Ayass, W.W., Nasir, E.F., Farooq, A., Sarathy, S.M.: Mixing-structure relationship in jet-stirred reactors. Chem. Eng. Res. Des. 111, 461–464 (2016)CrossRefGoogle Scholar
  12. 12.
    Gil, I., Mocek, P.: CFD Analysis of mixing in jet stirred reactors. Chem. Process Eng. 33(3), 397–410 (2012)CrossRefGoogle Scholar
  13. 13.
    Ayass, W.W.: Mixing in Jet-Stirred Reactors with Different Geometries. Master’s thesis, King Abdullah University of Science and Technology (2013)Google Scholar
  14. 14.
    Grosshans, H., Szász, R.-Z., Fuchs, L.: Enhanced liquid–gas mixing due to pulsating injection. Comput. Fluids 107, 196–204 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ghorbani, A., Steinhilber, G., Markus, D., Maas, U.: Ignition by transient hot turbulent jets: an investigation of ignition mechanisms by means of a PDF/REDIM method. Proc. Combust. Inst. 35(2), 2191–2198 (2015)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Echekki, T., Mastorakos, E.: Turbulent combustion modeling: advances, New Trends and Perspectives. Springer, New York (2010)zbMATHGoogle Scholar
  18. 18.
    Mahesh, K., Constantinescu, G., Apte, S., Iaccarino, G., Ham, F., Moin, P.: Large-Eddy simulation of reacting turbulent flows in complex geometries. J. Appl. Mech-Tran. ASME 73(3), 374–381 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    Veynante, D.: Turbulence and Interactions. In: Large Eddy Simulations of Turbulent Combustion. Springer, Berlin Heidelberg (2009)Google Scholar
  20. 20.
    Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic equations. Mon. Weather Rev. 91(3), 99–164 (1963)CrossRefGoogle Scholar
  21. 21.
    Banaeizadeh, A., Afshari, A., Schock, H., Jaberi, F.: Large-Eddy simulations of turbulent flows in internal combustion engines. Int. J. Heat Mass Transf. 60, 781–796 (2013)CrossRefGoogle Scholar
  22. 22.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. Edwards, USA (2005)Google Scholar
  23. 23.
    Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62(1), 40–65 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere, New York (1980)zbMATHGoogle Scholar
  25. 25.
    Crawford, M.R.: A Computational Study of Mixing in Jet Stirred Reactors. Ph.D. dissertation, University of Akron (2014)Google Scholar
  26. 26.
    Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large Eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)CrossRefzbMATHGoogle Scholar
  27. 27.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, United Kingdom (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Ghazaleh Esmaeelzade
    • 1
    Email author
  • Kai Moshammer
    • 1
  • Ravi Fernandes
    • 1
  • Detlev Markus
    • 1
  • Holger Grosshans
    • 1
  1. 1.Physikalisch-Technische Bundesanstalt (PTB)BraunschweigGermany

Personalised recommendations