Flow, Turbulence and Combustion

, Volume 102, Issue 1, pp 235–252 | Cite as

Vitiated High Karlovitz n-decane/air Turbulent Flames: Scaling Laws and Micro-mixing Modeling Analysis

  • Alexandre Bouaniche
  • Nicolas Jaouen
  • Pascale Domingo
  • Luc VervischEmail author


Turbulent flames with high Karlovitz numbers have deserved further attention in the most recent literature. For a fixed value of the Damköhler number (ratio between an integral mechanical time and a chemical time), the increase of the Karlovitz number (ratio between a chemical time and a micro-mixing time) by an order of magnitude implies the increase of the turbulent Reynolds number by two orders of magnitude (Bray, Symp. (Int.) Combust. 26, 1–26 1996). In the practice of real burners featuring a limited range of variation of their turbulent Reynolds number, high Karlovitz combustion actually goes with a drastic reduction of the Damköhler number. Within this context, the relation between the dilution by burnt gases and the apparition of high Karlovitz flames is discussed. Basic scaling laws are reported which suggest that the overall decrease of the burning rate due to very fast mixing can indeed be compensated by the energy brought to the reaction zone by burnt gases. To estimate the validity of these scaling laws, in particular the response of the quenching Karlovitz versus the dilution level with a vitiated stream, the micro-mixing rate is varied in a multiple-inlet canonical turbulent and reactive micro-mixing problem. A reduced n-decane/air chemical kinetics is used, which has been derived from a more detailed scheme using a combination of a directed relation graphs analysis with a Genetic Algorithm. The multiple-inlet canonical micro-mixing problem includes liquid fuel injection and dilution by burnt gases, both calibrated from conditions representative of an aeronautical combustion chamber. The results confirm the possibility of reaching, with the help of a vitiated mixture, very high Karlovitz combustion before quenching occurs.


High Karlovitz combustion Kerosene reduced chemistry n-decane flame Micro-mixing modeling Large Eddy simulation Spray flame 



The first author is supported by the European Union under the project SOPRANO, Horizon 2020 Grant Agreement No. 690724. The second author was funded by ANRT (Agence Nationale de la Recherche et de la Technology), SAFRAN-SNECMA and Air Liquide under the CIFRE No 1053/2013. Computing time has been provided by CRIANN (Centre Régional Informatique et d’Applications Numériques de Normandie).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Aspden, A.J., Day, M.S., Bell, J.B.: Turbulence-chemistry interaction in lean premixed hydrogen combustion. Proc. Combust. Inst. 35(2), 1321–1329 (2015)CrossRefGoogle Scholar
  2. 2.
    Aspden, A.J., Day, M.S., Bell, J.B.: Three-dimensional direct numerical simulation of turbulent lean premixed methane combustion with detailed kinetics. Combust. Flame 166, 266–283 (2016)CrossRefGoogle Scholar
  3. 3.
    Bagdanavicius, A., Bowen, P.J., Bradley, D., Lawes, M., Mansour, M.S.: Stretch rate effects and flame surface densities in premixed turbulent combustion up to 1.25 MPa. Combust. Flame 162(11), 4158–4166 (2015)CrossRefGoogle Scholar
  4. 4.
    Bédat, B., Cheng, R.K.: Experimental study of premixed flames in intense isotropic turbulence. Combust. Flame 100(3), 485–494 (1995)CrossRefGoogle Scholar
  5. 5.
    Bobbitt, B., Blanquart, G.: Vorticity isotropy in high Karlovitz number premixed flames. Phys. Fluids 28, 1070 (2016)Google Scholar
  6. 6.
    Bradley, D., Lawes, M., Liu, K., Mansour, M.S.: Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures. Combust. Flame 34(1), 1519–1526 (2013)Google Scholar
  7. 7.
    Carlsson, H., Yu, R., Bai, X.S.: Direct numerical simulation of lean premixed CH4/air and H2/air flames at high Karlovitz numbers. Int. J. Hydrog. Energy 39(35), 20,216–20,232 (2014)CrossRefGoogle Scholar
  8. 8.
    Carlsson, H., Yu, R., Bai, X.S.: Flame structure analysis for categorization of lean premixed CH4/air and H2/air flames at high Karlovitz numbers: direct numerical simulation studies. Proc. Combust. Inst. 35(2), 1425–1432 (2015)CrossRefGoogle Scholar
  9. 9.
    Cicoria, D., Chan, C.K.: Large Eddy simulation of lean turbulent hydrogen-enriched methane-air premixed flames at high Karlovitz numbers. Int. J. Hydrog. Energy 41(47), 22,479–22,496 (2016)CrossRefGoogle Scholar
  10. 10.
    Haiou, W., Hawkes, R., Chen, J.H.: A direct numerical simulation study of flame structure and stabilisation of an experimental high Ka CH4/air premixed jet flame. Combust. Flame 180, 110–123 (2017)CrossRefGoogle Scholar
  11. 11.
    Han, I., Huh, K.Y.: Effects of the Karlovitz number on the evolution of the flame surface density in turbulent premixed flames. Proc. Combust. Inst. 32(1), 1419–1425 (2009)CrossRefGoogle Scholar
  12. 12.
    Huang, C.C., Shy, S.S., Liu, C.C., Yan, Y.Y.: A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes. Proc. Combust. Inst. 31(1), 1401–1409 (2007)CrossRefGoogle Scholar
  13. 13.
    Kariuki, J., Dawson, J.R., Mastorakos, E.: Measurements in turbulent premixed bluff body flames close to blow-off. Combust. Flame 159(8), 2589–2607 (2012)CrossRefGoogle Scholar
  14. 14.
    Karlovitz, B.: Open turbulent flames. Symp. (Int.) Combust. 4(1), 60–67 (1953)CrossRefGoogle Scholar
  15. 15.
    Lapointe, S., Blanquart, G.: Fuel and chemistry effects in high Karlovitz premixed turbulent flames. Combust. Flame 167, 294–307 (2016)CrossRefGoogle Scholar
  16. 16.
    Lapointe, S., Savard, B., Blanquart, G.: Differential diffusion effects, distributed burning, and local extinctions in high Karlovitz premixed flames. Combust. Flame 162 (9), 3341–3355 (2015)CrossRefGoogle Scholar
  17. 17.
    Poludnenko, A.Y., Oran, E.S.: The interaction fo high-speed turbulence with flames: turbulent flame speed. Combust. Flame 158(2), 301–326 (2011)CrossRefGoogle Scholar
  18. 18.
    Ranjan, R., Muralidharan, B., Nagaoka, Y., Menon, S.: Subgrid-scale modeling of reaction-diffusion and scalar transport in turbulent premixed flames. Combust. Sci. Technol. 188(9), 1496–1537 (2016)CrossRefGoogle Scholar
  19. 19.
    Savard, B., Blanquart, G.: Broken reaction zone and differential diffusion effects in high Karlovitz n-C7H16 premixed turbulent flames. Combust. Flame 162(5), 2020–2033 (2015)CrossRefGoogle Scholar
  20. 20.
    Savard, B., Bobbitt, B., Blanquart, G.: Structure of a high Karlovitz n-C7H16 premixed turbulent flame. Proc. Combust. Inst. 35(2), 1377–1384 (2015)CrossRefGoogle Scholar
  21. 21.
    Shepherd, I.G., Cheng, R.K., Plessing, T., Kortschik, C., Peters, N.: Premixed flame front structure in intense turbulence. Proc. Combust. Inst. 29(2), 1833–1840 (2002)CrossRefGoogle Scholar
  22. 22.
    Shy, S.S., Liu, C.C., Lin, J.Y., Chen, L.L., Lipatnikov, A.N., Yang, S.I.: Correlations of high-pressure lean methane and syngas turbulent burning velocities: effects of turbulent Reynolds, Damköhler, and Karlovitz numbers. Proc. Combust. Inst. 35 (2), 1509–1516 (2015)CrossRefGoogle Scholar
  23. 23.
    Sitte, M.P., Bach, E., Kariuki, J., Bauer, H.J., Mastorakos, E.: Simulations and experiments on the ignition probability in turbulent premixed bluff-body flames. Combust. Theor. Model. 20(3), 548–565 (2016)CrossRefGoogle Scholar
  24. 24.
    Sjöholm, J., Rosell, J., Li, B., Richter, M., Li, Z., Bai, X.S., Aldén, M.: Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence. Proc. Combust. Inst. 34(1), 1475–1482 (2013)CrossRefGoogle Scholar
  25. 25.
    Wang, H., Hawkes, E.R., Chen, J.H.: Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame. Phys. Fluids 28, 095,107 (2016)CrossRefGoogle Scholar
  26. 26.
    Yang, S.I., Shy, S.S.: Global quenching of premixed CH4/air flames: effects of turbulent straining, equivalence ratio, and radiative heat loss. Proc. Combust. Inst. 29 (2), 1841–1847 (2002)CrossRefGoogle Scholar
  27. 27.
    Yuen, F.T.C., Gülder, Ö.L.: Turbulent premixed flame front dynamics and implications for limits of flamelet hypothesis. Proc. Combust. Inst. 34(1), 1393–1400 (2013)CrossRefGoogle Scholar
  28. 28.
    Zhou, B., Brackmann, C., Li, Q., Wang, Z., Petersson, P., Li, Z., Aldén, M., Bai, X.S.: Distributed reactions in highly turbulent premixed methane/air flames: Part I. Flame structure characterization. Combust. Flame 162(7), 2937–2953 (2015)CrossRefGoogle Scholar
  29. 29.
    Zhou, B., Brackmann, C., Li, Z., Aldén, M., Bai, X.S.: Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime. Proc. Combust. Inst. 35(2), 1409–1416 (2015)CrossRefGoogle Scholar
  30. 30.
    Zhou, B., Brackmann, C., Wang, Z., Li, Z., Richter, M., Aldén, M., Bai, X.S.: Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations. Combust. Flame 175, 220–236 (2017)CrossRefGoogle Scholar
  31. 31.
    Chomiak, J., Jarosinski, J.: Flame quenching by turbulence. Combust. Flame 48, 241–249 (1982)CrossRefGoogle Scholar
  32. 32.
    Karlovitz, B., Lewis, B.: Comment on the paper “Flame quenching by turbulence”. Combust. Flame 54(1–3), 229 (1983)CrossRefGoogle Scholar
  33. 33.
    Borghi, R.: Mise au point sur la structure des flammes turbulentes. J. Chim. Phys. 81(6), 361–370 (1984)CrossRefGoogle Scholar
  34. 34.
    Borghi, R.: Turbulent combustion modelling. Prog. Energy Combust. Sci. 14, 245–292 (1988)CrossRefGoogle Scholar
  35. 35.
    Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  36. 36.
    Peters, N.: Multiscale combustion and turbulence. Proc. Combust. Inst. 32(1), 1–25 (2009)CrossRefGoogle Scholar
  37. 37.
    Libby, P.A.: Introduction to Turbulence. Combustion. Taylor & Francis, New York (1996)Google Scholar
  38. 38.
    Bray, K.N.C.: The challenge of turbulent combustion. Symp. (Int.) Combust. 26, 1–26 (1996)CrossRefGoogle Scholar
  39. 39.
    Farcy, B., Vervisch, L., Domingo, P., Perret, N.: Reduced-order modeling for the control of selective non-catalytic reduction (SNCR). AIChE J. 62(3), 928–938 (2016)CrossRefGoogle Scholar
  40. 40.
    Jaouen, N., Vervisch, L., Domingo, P., Ribert, G.: Automatic reduction and optimisation of chemistry for turbulent combustion modeling: impact of the canonical problem. Combust. Flame 175, 60–79 (2017)CrossRefGoogle Scholar
  41. 41.
    Jaouen, N.: An Automated Approach to Derive and Optimise Reduced Chemical Mechanisms for Turbulent Combustion. Ph.D. thesis, Normandy University, INSA Rouen Normandie (2016)Google Scholar
  42. 42.
    Curl, R.I.: Dispersed phase mixing. Theory and effects in simple reactors. AIChE 9(2), 175–181 (1963)CrossRefGoogle Scholar
  43. 43.
    Dopazo, C.: Relaxation of initial probability density functions in the turbulent convection of scalar fields. Phys. Fluids 22(1), 20–30 (1979)CrossRefzbMATHGoogle Scholar
  44. 44.
    Janicka, J., Kolbe, W., Kollmann, W.: Closure of the transport equation for the probability density function of turbulent scalar fields. J. Non-Equilib. Thermodyn. 4, 47–66 (1979)CrossRefzbMATHGoogle Scholar
  45. 45.
    Xu, J., Pope, S.: Pdf calculations of turbulent nonpremixed flames with local extinction. Combust. Flame 123, 281–307 (2000)CrossRefGoogle Scholar
  46. 46.
    Sundaram, B., Klimenko, A.Y., Cleary, M.J., Maas, U.: Prediction of NOx in premixed high-pressure lean methane flames with an MMC-partially stirred reactor. Proc. Combust. Inst. 35(2), 1517–1525 (2015)CrossRefGoogle Scholar
  47. 47.
    Kerstein, A.R.: Hierarchical parcel-swapping representation of turbulent mixing. Part 2. Application to channel flow. J. Fluid Mech. 750, 421–463 (2014)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Sirignano, W.A.: Fuel droplet vaporization and spray combustion theory. Prog. Energy Combust. Sci. 8, 291–322 (1983)CrossRefGoogle Scholar
  49. 49.
    Sirignano, W.A.: Advances in droplet array combustion theory and modeling. Prog. Energy Combust. Sci. 42, 54–86 (2014)CrossRefGoogle Scholar
  50. 50.
    Spalding, D.B.: The combustion of liquid fuels. Symp. (Int.) Combust. 4, 847–864 (1953)CrossRefGoogle Scholar
  51. 51.
    Nomura, H., Murakoshi, T., Suganuma, Y., Ujiie, Y., Hashimoto, N., Nishida, H.: Microgravity experiments of fuel droplet evaporation in sub- and supercritical environments. Proc. Combust. Inst. 36(2), 2425–2432 (2017)CrossRefGoogle Scholar
  52. 52.
    Luche, J.: Elaboration of Reduced Kinetic Models of Combustion. Application to the a Kerosene Mechanism. Ph.D. thesis, Orléans University (2003)Google Scholar
  53. 53.
    Luche, J., Reuillon, M., Boettner, J.C., Cathonnet, M.: Reduction of large detailed kinetic mechanisms: application to kerosene/air combustion. Combust. Sci. Technol. 176(11), 1935–1963 (2004)CrossRefGoogle Scholar
  54. 54.
    Dagaut, P.: On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel. Phys. Chem. Chem. Phys. 4(11), 2079–2094 (2002)CrossRefGoogle Scholar
  55. 55.
    Wang, H., Xu, R., Wang, K., Bowman, C.T., Hanson, R.K., Davidson, D.F., Brezinsky, K., Egolfopoulos, F.N.: A physics-based approach to modeling real-fuel combustion chemistry - I: evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations. Combust. Flame. (2018)
  56. 56.
    Lu, T., Law, C.K.: A directed relation graph method for mechanism reduction. Proc. Combust. Inst. 30(1), 1333–1341 (2005)CrossRefGoogle Scholar
  57. 57.
    Pepiot, P., Pitsch, H.: An efficient error propagation based reduction method for large chemical kinetic mechanisms. Combust. Flame 154(1–2), 67–81 (2008)zbMATHGoogle Scholar
  58. 58.
    Jaouen, N., Vervisch, L., Domingo, P.: Auto-thermal reforming (ATR) of natural gas: an automated derivation of optimised reduced chemical schemes. Proc. Combust. Inst. 36(3), 3321–3330 (2017)CrossRefGoogle Scholar
  59. 59.
    Dopazo, C., O’Brien, E.: Functional formulation of nonisothermal turbulent reactive flows. Phys. Fluids 17, 1968–1975 (1974)CrossRefzbMATHGoogle Scholar
  60. 60.
    Goodwin, D.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. (2009)
  61. 61.
    de Goey, L., Boonkkamp, J.T.T.: A flamelet description of premixed laminar flames and the relation with flame stretch. Combust. Flame 119, 253–271 (1999)CrossRefGoogle Scholar
  62. 62.
    Liñán, A., Williams, F.A.: Fundamental Aspects of Combustion. Oxford University Press, Oxford (1993)Google Scholar
  63. 63.
    Lele, S.K.: Compact finite difference schemes with spectral like resolution. J. Comput. Phys. 103, 16–42 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Wang, K., Ribert, G., Domingo, P., Vervisch, L.: Self-similar behavior and chemistry tabulation of burnt-gases diluted premixed flamelets including heat-loss. Combust. Theor. Model. 4(14), 541–570 (2010)CrossRefzbMATHGoogle Scholar
  65. 65.
    Boulanger, J.: Asymptotic Analysis and Direct Numerical Simulation of Partially Premixed Combustion. Ph.D. thesis, INSA de Rouen Normandie (2002)Google Scholar
  66. 66.
    Clavin, P.: Premixed combustion and gasdynamics. Annu. Rev. Fluid Mech. 26, 321–52 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Peters, N.: Length scales in laminar and turbulent flames. In: Oran, E.S., Boris, J.A. (eds.) Numerical Approaches to Combustion Modeling, Prog. Astronautics and Aeronautics, vol. 135, pp. 155–182. AIAA, Washington (1991)Google Scholar
  68. 68.
    Moureau, V., Domingo, P., Vervisch, L.: From Large-Eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-pdf modeling. Combust. Flame 158(7), 1340–1357 (2011)CrossRefGoogle Scholar
  69. 69.
    Meier, W., Weigand, P., Duan, X., Giezendanner-Thoben, R.: Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame. Combust. Flame 150(1/2), 2–26 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.CORIA - CNRSNormandie Université, INSA de Rouen NormandieSaint-Etienne-du-RouvrayFrance
  2. 2.Heat-Transfer & Reacting FlowsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations