Assessment of FSD and SDR Closures for Turbulent Flames of Alternative Fuels

Article
  • 32 Downloads

Abstract

Detailed-chemistry DNS studies are becoming more common due to the advent of more powerful modern computer architectures, and as a result more realistic flames can be simulated. Such flames involve many alternative fuels such as syngas and blast furnace gas, which are usually composed of many species and of varying proportions. In this study, we evaluate whether some of the commonly used models for the scalar dissipation rate and flame surface density can be used to model such flames in the LES context. A priori assessments are conducted using DNS data of multi-component fuel turbulent premixed flames. These flames offer unique challenges because of their complex structure having many distinct consumption layers for the different fuel components unlike in a single-component fuel. Some of the models tested showed good agreement with the DNS data and thus they can be used for the multi-component fuel combustion.

Keywords

DNS LES Fractal Flame surface density Scalar dissipation rate Alternative fuels 

Notes

Acknowledgements

ZMN and NS acknowledge the funding through the Low Carbon Energy University Alliance Programme supported by Tsinghua University, China. ZMN also likes to acknowledge the educational grant through the A.G. Leventis Foundation. This work made use of the facilities of HECToR, the UK’s national high-performance computing service, which is provided by UoE HPCx Ltd at the University of Edinburgh, Cray Inc and NAG Ltd, and funded by the Office of Science and Technology through EPSRC’s High End Computing Programme. ZMN also acknowledges PRACE for awarding us access to resource Beskow of PDC center for high-performance computing based in Sweden at KTH.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. En. Combust. Sc. 38, 782–817 (2012)CrossRefGoogle Scholar
  2. 2.
    Veynante, D., Vervisch, L.: Turbulent combustion modelling. Prog. En. Combust. Sc. 28, 193–266 (2002)CrossRefGoogle Scholar
  3. 3.
    Mantel, T., Borghi, R.: A new model of premixed wrinkled flame propagation based on a scalar dissipation equation. Combust. Flame 96, 443–457 (1994)CrossRefGoogle Scholar
  4. 4.
    Borghi, R., Dutoya, D.: On the scales of the fluctuations in turbulent combustion. Proc. Combust. Inst. 17, 235–244 (1979)CrossRefGoogle Scholar
  5. 5.
    Marble, F.E., Broadwell, J.E.: The coherent flame model for turbulent chemical reactions. Tech. Rep. TRW-9-PU Project Squid (1977)Google Scholar
  6. 6.
    Candel, S.M., Maistret, E., Darabiha, N., Poinsot, T., Veynante, D., Lacas, F.: Experimental and numerical studies of turbulent ducted flames. Marb. Symp., 209–236 (1988)Google Scholar
  7. 7.
    Pope, S.: The evolution of surfaces in turbulence. Int. J. Engng. Sci. 26, 445–469 (1988)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bray, K.N.C., Champion, M., Libby, P.A.: The interaction between turbulence and chemistry in premixed turbulent flames. Turbulent Reactive Flows, Lecture notes in engineering, pp. 541-563. Springer VerlagGoogle Scholar
  9. 9.
    Bray, K.N.C., Moss, J.B.: A unified statistical model of the premixed turbulent flame. Acta Astron. 4, 291–319 (1977)CrossRefGoogle Scholar
  10. 10.
    Borghi, R.: Turbulent premixed combustion: further discussions on scales of fluctuations. Combust. Flame 80, 304–312 (1990)CrossRefGoogle Scholar
  11. 11.
    Mura, A., Borghi, R.: Towards an extended scalar dissipation equation for turbulent premixed combustion. Combust. Flame 133, 193–196 (2003)CrossRefGoogle Scholar
  12. 12.
    Swaminathan, N., Grout, R.: Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids 18, 045102 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kolla, H., Rogerson, J.W., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modelling and its validation. Combust. Sci. Tech. 181, 518–535 (2009)CrossRefGoogle Scholar
  14. 14.
    Chakraborty, N., Swaminathan, N.: Influence of the Damköhler number on turbulence-scalar interaction in premixed flames I: Physical insight. Phys. Fluids 19, 045103 (2007)CrossRefMATHGoogle Scholar
  15. 15.
    Chakraborty, N., Swaminathan, N.: Influence of the Damköhler number on turbulence-scalar interaction in premixed flames II: Model development. Phys. Fluids 19, 045104 (2007)CrossRefMATHGoogle Scholar
  16. 16.
    Mura, A., Tsuboi, K., Hasegawa, T.: Modelling of the correlation between velocity and reactive scalar gradients in turbulent premixed flames based on DNS data. Combust. Th. Model. 12, 671–698 (2008)CrossRefMATHGoogle Scholar
  17. 17.
    Angelberger, C., Veynante, D., Egolfopoulos, F.: LES of chemical and acoustic forcing of a premixed dump combustor. Flow Turb. Combust. 65, 205–222 (2000)CrossRefMATHGoogle Scholar
  18. 18.
    Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: Non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002)CrossRefGoogle Scholar
  19. 19.
    Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: Dynamic formulation. Combust. Flame 131, 181–197 (2002)CrossRefGoogle Scholar
  20. 20.
    Fureby, C.: A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30, 593–601 (2005)CrossRefGoogle Scholar
  21. 21.
    Grinstein, F.F., Fureby, C.: LES studies of the flow in a swirl gas combustor. Proc. Combust. Inst. 2, 1791–1798 (2005)CrossRefGoogle Scholar
  22. 22.
    Wang, G., Boileau, M., Veynante, D.: Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame 11, 2199–2213 (2011)CrossRefGoogle Scholar
  23. 23.
    Wang, G., Boileau, M., Veynante, D., Truffin, K.: Large eddy simulation of a growing turbulent premixed flame kernel using a dynamic flame surface density model. Combust. Flame 159, 2742–2754 (2012)CrossRefGoogle Scholar
  24. 24.
    Volpiani, P.S., Schmitt, T., Veynante, D.: A posteriori tests of a dynamic thickened flame model for large Eddy simulations of turbulent premixed combustion. Combust. Flame 174, 166–178 (2016)CrossRefGoogle Scholar
  25. 25.
    Mouriaux, S., Colin, O., Veynatne, D.: Adaptation of a dynamic wrinkling model to an engine configuration. Proc. Combust. Inst. 36, 3415–3422 (2017)CrossRefGoogle Scholar
  26. 26.
    Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)CrossRefMATHGoogle Scholar
  27. 27.
    Gulder, O., Smallwood, G.J.: Inner cut-off scale of flame surface wrinkling in turbulent premixed flames. Combust. Flame 103, 107–114 (1995)CrossRefGoogle Scholar
  28. 28.
    Knikker, R., Veynante, D., Meneveau, C.: A dynamic flame surface density model for large Eddy simulation of turbulent premixed combustion. Phys. Fluids 16, 91–94 (2005)CrossRefMATHGoogle Scholar
  29. 29.
    Chakraborty, N., Klein, M.: A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large Eddy simulation. Phys. Fluids 20, 085108 (2008)CrossRefMATHGoogle Scholar
  30. 30.
    Roberts, W.L., Driscoll, J.F., Drake, M.C., Goss, L.P.: Images of the quenching of a flame by a vortex-to quantify regimes of turbulent combustion. Combust. Flame 94, 58–69 (1993)CrossRefGoogle Scholar
  31. 31.
    North, G.L., Santavicca, D.A.: The fractal nature of turbulent premixed flames. Combust. Sc. Techn. 72, 215–232 (1990)CrossRefGoogle Scholar
  32. 32.
    Kerstein, A.: Fractal dimension of turbulent premixed flames. Comb. Sc. Techn. 60, 441–445 (1988)CrossRefGoogle Scholar
  33. 33.
    Katragadda, M., Chakraborty, N., Cant, R.S.: Effects of turbulent Reynolds number on the performance of algebraic flame surface density models for large Eddy simulation in the thin reaction zones regime: A direct numerical simulation analysis. J. Comb., 794671 (2012)Google Scholar
  34. 34.
    Dunstan, T., Minamoto, Y., Swaminathan, N., Chakraborty, N.: Scalar dissipation rate modelling for large Eddy simulation of turbulent premixed flames. Proc. Combust. Inst. 34, 1193–1201 (2013)CrossRefGoogle Scholar
  35. 35.
    Gao, Y., Chakraborty, N., Swaminathan, N.: Algebraic closure of scalar dissipation rate for large eddy simulations of turbulent premixed combustion. Comb. Sc. Tech. 186, 1309–1337 (2014)CrossRefGoogle Scholar
  36. 36.
    Kolla, H., Rogerson, J.W., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modelling and its validation. Combust. Sci. Technol. 181, 518–535 (2009)CrossRefGoogle Scholar
  37. 37.
    Girimaji, S., Zhou, Y.: Analysis and modelling of sub-grid scalar mixing using numerical data. Phys. Fluids 8, 1224 (1996)CrossRefMATHGoogle Scholar
  38. 38.
    Gao, Y., Chakraborty, N., Swaminathan, N.: Dynamic closure of scalar dissipation rate for large eddy simulations of turbulent premixed combustion: A direct numerical simulation analysis. Flow Turb. Combust. 95, 775–802 (2015)CrossRefGoogle Scholar
  39. 39.
    Langella, I., Swaminathan, N., Gao, Y., Chakraborty, N.: Assessment of dynamic closure for premixed combustion large Eddy simulation. Combust. Th. Model. 19, 628–656 (2015)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Langella, I., Swaminathan, N.: Unstrained and strained flamelets for LES of premixed combustion. Combust. Th. Model. 20, 410–440 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Langella, I., Swaminathan, N., Pitz, R.W.: Application of unstrained flamelet SGS closure for multi-regime premixed combustion. Combust. Flame. 173, 161–178 (2016)CrossRefGoogle Scholar
  42. 42.
    Gao, Y., Minamoto, Y., Tanahashi, M., Chakraborty, N.: A priori assessment of scalar dissipation rate closure for large Eddy simulations of turbulent premixed combustion using a detailed chemistry direct numerical simulation database. Combust. Sc. Tech. 188, 1398–1423 (2016)CrossRefGoogle Scholar
  43. 43.
    Minamoto, Y., Fukushima, N., Tanahashi, M., Miyauchi, T., Dunstan, T., Swaminathan, N.: Effect of flow-geometry on turbulence scalar interaction in premixed flames. Phys. Fluids 23, 125107 (2011)CrossRefGoogle Scholar
  44. 44.
    Das, A.K., Kumar, K., Sung, C.: Laminar flame speeds of moist syngas mixtures. Combust. Flame 158, 345–353 (2011)CrossRefGoogle Scholar
  45. 45.
    Nikolaou, Z.M., Chen, J.Y., Swaminathan, N.: A 5-step reduced mechanism for combus- tion of CO/H2/H2O/CH4/CO2 mixtures with low hydrogen/methane and high H2O content. Combust. Flame 160, 56–75 (2013)CrossRefGoogle Scholar
  46. 46.
    Singh, D., Takayuki, N., Saad, T., Qiao, L.: An experimental and kinetic study of syngas/air combustion at elevated temperatures and the effect of water addition. Fuel 94, 448–456 (2012)CrossRefGoogle Scholar
  47. 47.
    Nikolaou, Z.M., Swaminathan, N.: Direct numerical simulation of complex fuel combustion with detailed chemistry: Physical insight and mean reaction rate modelling. Comb. Sc. Tech. 187, 1759–1789 (2015)CrossRefGoogle Scholar
  48. 48.
    Cant, R.S.: SENGA2 User Guide, CUED/A–THERMO/TR67 September (2012)Google Scholar
  49. 49.
    Nikolaou, Z.M., Swaminathan, N.: Evaluation of a reduced mechanism for turbulent premixed combustion. Combust. Flame 161, 3085–3099 (2014)CrossRefGoogle Scholar
  50. 50.
    Nikolaou, Z., Swaminathan, N.: A 5-step reduced mechanism for combustion of CO/H2/H2O/CH4/CO2 mixtures with low hydrogen/methane and high H 2O content. Comb. Flame 160, 56–75 (2013)CrossRefGoogle Scholar
  51. 51.
    Peters, N.: The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107–132 (1999)CrossRefMATHGoogle Scholar
  52. 52.
    Nikolaou, Z., Swaminathan, N.: Heat release rate markers for premixed combustion. Comb. Flame 161, 3073–3084 (2014)CrossRefGoogle Scholar
  53. 53.
    Chatakonda, O., Hawkes, E.R., Aspden, A.J., Kerstein, A.R., Kolla, H., Chen, J.H.: On the fractal characteristics of low Damkohler number flames. Combust. Flame 120, 2422–2443 (2013)CrossRefGoogle Scholar
  54. 54.
    Butz, D., Gao, Y., Kempf, A.M., Chakraborty, N.: Large Eddy simulations of a turbulent premixed swirl flame using an algebraic scalar dissipation rate closure. Combust. Flame 162, 3180–3196 (2015)CrossRefGoogle Scholar
  55. 55.
    Cant, R.S., Pope, S.B., Bray, K.N.C.: Modelling of flamelet surface to volume ratio in turbulent premixed combustion. Proc. Combust. Inst. 23, 809–815 (1990)CrossRefGoogle Scholar
  56. 56.
    Hawkes, E.R., Cant, R.S.: A flame surface density approach to large eddy simulation of premixed turbulent combustion. Proc. Combust. Inst. 28, 51–58 (2000)CrossRefGoogle Scholar
  57. 57.
    Hawkes, E.R., Cant, R.S.: Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion. Combust. Flame 126, 1617–1629 (2001)CrossRefGoogle Scholar
  58. 58.
    Chakraborty, N., Cant, R.S.: Direct numerical simulation analysis of the flame surface density transport equation in the context of large Eddy simulation. Proc. Combust. Inst. 32, 1445–1453 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of StrathclydeGlasgowUK
  2. 2.University of CambridgeCambridgeUK
  3. 3.Computation-based Science and Technology Research Centre (CaSToRC)The Cyprus InstituteNicosiaCyprus

Personalised recommendations