Flow, Turbulence and Combustion

, Volume 102, Issue 1, pp 129–143 | Cite as

On the Application of Acoustic Analogies in the Numerical Simulation of Human Phonation Process

  • J. ValášekEmail author
  • M. Kaltenbacher
  • P. Sváček


This paper deals with the numerical simulation of the flow induced sound as generated in the human phonation process. The two-dimensional fluid-structure interaction problem is modeled with the aid of linear elastic problem coupled to the incompressible Navier-Stokes equations in the arbitrary Lagrangian-Eulerian form. For calculation of sound sources and its propagation the Lighthill acoustic analogy is used. This approach is compared to the Perturbed Convective Wave Equation method. All partial differential equations, describing the elastic body motion, the fluid flow and the acoustics, are solved by applying the finite element method. In order to overcome numerical instabilities in the Navier-Stokes equations arising due to high Reynolds numbers, the modified streamline-upwind/Petrov-Galerkin stabilization is used. The implemented iterative coupling procedure is described. Numerical results are presented.


Fluid-structure interaction 2D Navier-Stokes equations Linear elasticity Aeroacoustic analogies Perfectly matched layer 



The financial support for the present project was provided by the Grant No. GA16-01246S and Grant No. GA17-01747S of the Czech Science Foundation. Authors are grateful for possibility to use CFS++ scientific FE library developed at TU Vienna.

Funding Information

This study was funded by Grant No. GA16-01246S and by Grant No. GA17-01747S provided by Czech Science Foundation.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Mittal, R., Zheng, X., Bhardwaj, R., Seo, J.H., Xue, Q., Bielamowicz, S.: Toward a simulation-based tool for the treatment of vocal fold paralysis. Front. Physiol. 2(19), 1–15 (2011)Google Scholar
  2. 2.
    Ruben, R.J.: Redefining the survival of the fittest: communication disorders in the 21st century. Laryngoscope 110(2), 241–241 (2000)CrossRefGoogle Scholar
  3. 3.
    Titze, I.R., Alipour, F.: The Myoelastic Aerodynamic Theory of Phonation. National Center for Voice and Speech (2006)Google Scholar
  4. 4.
    Kaltenbacher, M.: Numerical Simulation of Mechatronic Sensors and Actuators: Finite Elements for Computational Multiphysics. Springer, Berlin (2015)Google Scholar
  5. 5.
    Feistauer, M., Sváček, P., Horáček, J.: Numerical simulation of fluid-structure interaction problems with applications to flow in vocal folds. In: Bodnár, T., Galdi, G.P., Nečasová, S. (eds) Fluid-structure Interaction and Biomedical Applications, pp. 312–393. Birkhauser (2014)Google Scholar
  6. 6.
    Schwarze, R., Mattheus, W., Klostermann, J., Brücker, C.: Starting jet flows in a three-dimensional channel with larynx-shaped constriction. Comput. Fluids 48(1), 68–83 (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Pořízková, P., Kozel, K., Horáček, J.: Simulation of unsteady compressible flow in a channel with vibrating walls-influence of the frequency. Comput. Fluids 46 (1), 404–410 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ṡidlof, P., Zörner, S., Hüppe, A.: A hybrid approach to the computational aeroacoustics of human voice production. Biomech. Model. Mechanobiol. 14(3), 473–488 (2014)CrossRefGoogle Scholar
  9. 9.
    De Vries, M., Schutte, H., Veldman, A., Verkerke, G.: Glottal flow through a two-mass model: comparison of navier–stokes solutions with simplified models. J. Acoust. Soc. Am. 111(4), 1847–1853 (2002)CrossRefGoogle Scholar
  10. 10.
    Tao, C., Zhang, Y., Hottinger, D.G., Jiang, J.J.: Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds. J. Acoust. Soc. Am. 122(4), 2270–2278 (2007)CrossRefGoogle Scholar
  11. 11.
    de Oliveira Rosa, M., Pereira, J.C., Grellet, M., Alwan, A.: A contribution to simulating a three-dimensional larynx model using the finite element method. J. Acoust. Soc. Am. 114(5), 2893–2905 (2003)CrossRefGoogle Scholar
  12. 12.
    Thomson, S.L., Mongeau, L., Frankel, S.H.: Aerodynamic transfer of energy to the vocal folds. J. Acoust. Soc. Am. 118(3), 1689–1700 (2005)CrossRefGoogle Scholar
  13. 13.
    Xue, Q., Zheng, X., Mittal, R., Bielamowicz, S.: Subject-specific computational modeling of human phonation. J. Acoust. Soc. Am. 135(3), 1445–1456 (2014)CrossRefGoogle Scholar
  14. 14.
    Link, G., Kaltenbacher, M., Breuer, M., Döllinger, M.: A 2D finite-element scheme for fluid-solid-acoustic interactions and its application to human phonation. Comput. Methods Appl. Mech. Eng. 198, 3321–3334 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ewert, R., Schröder, W.: Acoustic perturbation equations based on flow decomposition via source filtering. J. Comput. Phys. 188(2), 365–398 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kaltenbacher, M., Hüppe, A., Reppenhagen, A., Tautz, M., Becker, S., Kuehnel, W.: Computational aeroacoustics for hvac systems utilizing a hybrid approach. SAE Int. J. Passenger Cars Mech. Syst. 9(2016-01-1808), 1047–1052 (2016)CrossRefGoogle Scholar
  17. 17.
    Kaltenbacher, B., Kaltenbacher, M., Sim, I.: A modified and stable version of a perfectly matched layer technique for the 3-D second order wave equation in time domain with an application to aeroacoustics. J. Comput. Phys. 235, 407–422 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gelhard, T., Lube, G., Olshanskii, M.A., Starcke, J.H.: Stabilized finite element schemes with LBB-stable elements for incompressible flows. J. Comput. Appl. Math. 177(2), 243–267 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Slaughter, W.S.: Linearized Elasticity Problems. Springer, Berlin (2002). CrossRefzbMATHGoogle Scholar
  20. 20.
    Valášek, J., Sváček, P., Horáček, J.: On numerical approximation of fluid-structure interactions of air flow with a model of vocal folds. In: Šimurda, D., Bodnár, T. (eds.) Topical Problems of Fluid Mechanics 2016, pp. 245–254. Institute of Thermomechanics, AS CR, v.v.i (2015)Google Scholar
  21. 21.
    Braack, M., Mucha, P.B.: Directional do-nothing condition for the Navier-Stokes equations. J. Comput. Math. 32, 507–521 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lighthill, M.J.: On sound generated aerodynamically. I. General theory. In: Proceedings of the Royal Society of London, vol. 211, pp. 564–587. The Royal Society (1952)Google Scholar
  23. 23.
    Hüppe, A.: Spectral Finite Elements for Acoustic Field Computation. Ph.D. thesis, Alpen-Adria-Universitt Klagenfurt (2012)Google Scholar
  24. 24.
    Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)zbMATHGoogle Scholar
  25. 25.
    Curnier, A.: Computational Methods in Solid Mechanics. Springer, Netherlands (1994)CrossRefzbMATHGoogle Scholar
  26. 26.
    Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1986)CrossRefzbMATHGoogle Scholar
  27. 27.
    Zörner, S., Kaltenbacher, M., Döllinger, M.: Investigation of prescribed movement in fluid-structure interaction simulation for the human phonation process. Comput. Fluids 86, 133–140 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kaltenbacher, M., Escobar, M., Becker, S., Ali, I.: Numerical simulation of flow-induced noise using LES/SAS and Lighthill’s acoustic analogy. Int. J. Numer. Methods Fluids 63(9), 1103–1122 (2010)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Story, B.H., Titze, I.R., Hoffman, E.A.: Vocal tract area functions from magnetic resonance imaging. J. Acoust. Soc. Am. 100(1), 537–554 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Technical MathematicsFaculty of Mechanical EngineeringPraha 2Czech Republic
  2. 2.Institute for Mechanics and MechatronicsVienna University of TechnologyWienAustria

Personalised recommendations