Flow, Turbulence and Combustion

, Volume 102, Issue 1, pp 117–128 | Cite as

Assessing Transitional Air Flow during Human Exhalation from Large Eddy Simulations based on Spectral Entropy

  • Samuel Voss
  • Christoph Arens
  • Gábor JanigaEmail author


Automatized classification of turbulent flow is a challenging task, since turbulence is a phenomenon with highly varying parameters in space and time. In medical flow simulation, such a classification might be a key factor, enabling an easy and valuable comparison of patient data sets with respect to a wide range of sizes and shapes while addressing functionally similar processes. Within this study, two subject-specific geometries of the human respiratory tract are considered in a comparative flow characterization. Detailed Large Eddy Simulations (LES) of the respiration process (open vocal folds) are performed, incorporating individual geometric features based on head and neck CT imaging. Proper Orthogonal Decomposition (POD) analysis is followed by the calculation of the spectral entropy, a measure of the turbulence intensity. The flow field inside the respiratory tract shows transition from laminar (below the vocal folds) to turbulent flow (above glottis, inside larynx). This transition can easily be assessed based on the spectral entropy, as shown for the computed flow fields, and can capture variations in the local flow patterns. The present work proposes a measure to quantify the flow state based on the spectral entropy computed by POD. It is shown that this quantity can well be applied to characterize the flow state (laminar, transitional, or turbulent) in complex patient-specific geometries.


Larynx Respiration Computational Fluid Dynamics (CFD) Large Eddy Simulation (LES) Proper Orthogonal Decomposition (POD) Spectral Entropy 



The authors warmly acknowledge the fruitful discussions with Franziska Schulz.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary material

10494_2018_9894_MOESM1_ESM.mp4 (20.9 mb)
(MP4 20.8 MB)


  1. 1.
    Mittal, R., Erath, B.D., Plesniak, M.W.: Fluid dynamics of human phonation and speech. Annu. Rev. Fluid Mech. 45, 437–467 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cui, X., Gutheil, E.: Large Eddy simulation of the unsteady flow-field in an idealized human mouth-throat configuration. J. Biomech. 44(16), 2768–2774 (2011). CrossRefGoogle Scholar
  3. 3.
    de Luzan, C.F., Chen, J., Mihaescu, M., Khosla, S.M., Gutmark, E.: Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx. J. Biomech. 48(7), 1248–1257 (2015). CrossRefGoogle Scholar
  4. 4.
    Mihaescu, M., Khosla, S.M., Murugappan, S., Gutmark, E.J.: Unsteady laryngeal airflow simulations of the intra-glottal vortical structures. J. Acous. Soc. Amer. 127(1), 435–444 (2010). CrossRefGoogle Scholar
  5. 5.
    Mihaescu, M., Mylavarapu, G., Gutmark, E.J., Powell, N.B.: Large Eddy simulation of the pharyngeal airflow associated with obstructive sleep apnea syndrome at pre and post-surgical treatment. J. Biomech. 44(12), 2221–2228 (2011). CrossRefGoogle Scholar
  6. 6.
    Powell, N.B., Mihaescu, M., Mylavarapu, G., Weaver, E.M., Guilleminault, C., Gutmark, E.J.: Patterns in pharyngeal airflow associated with sleep-disordered breathing. Sleep Med. 12(10), 966–974 (2011). CrossRefGoogle Scholar
  7. 7.
    Xi, J., Si, X., Kim, J.W., Berlinski, A: Simulation of airflow and aerosol deposition in the nasal cavity of a 5-year-old child. J. Aerosol Sci. 42(3), 156–173 (2011). CrossRefGoogle Scholar
  8. 8.
    Koullapis, P.G., Kassinos, S.C., Bivolarova, M.P., Melikov, A.K.: Particle deposition in a realistic geometry of the human conducting airways: Effects of inlet velocity profile, inhalation flowrate and electrostatic charge. J. Biomech. 49(11), 2201–2212 (2016). CrossRefGoogle Scholar
  9. 9.
    Choi, J., Tawhai, M.H., Hoffman, E.A., Lin, C.L.: On intra- and intersubject variabilities of airflow in the human lungs. Phys. Fluids 21(10), 101901 (2009). CrossRefzbMATHGoogle Scholar
  10. 10.
    Bates, A.J., Doorly, D.J., Cetto, R., Calmet, H., Gambaruto, A.M., Tolley, N.S., Houzeaux, G., Schroter, R.C.: Dynamics of airflow in a short inhalation. J. R. Soc. Interface 12(102), 20140880 (2015). CrossRefGoogle Scholar
  11. 11.
    Lumley, J.L: The structure of inhomogeneous turbulent flows. In: Yaglom, A.M., Tatarski, V.I. (eds.) Atmospheric Turbulence and Radio Propagation, pp 166–178. Nauka, Moscow (1967)Google Scholar
  12. 12.
    Sirovich, L.: Turbulence and the dynamics of coherent structures. Part 1: Coherent structures. Q. Appl. Math. 45(3), 561–571 (1987)CrossRefzbMATHGoogle Scholar
  13. 13.
    Arányi, P., Janiga, G., Zähringer, K., Thėvenin, D.: Analysis of different POD methods for PIV-measurements in complex unsteady flows. Int. J. Heat Fluid Flow 43, 204–211 (2013). CrossRefGoogle Scholar
  14. 14.
    Agnihotri, V., Ghorbaniasl, G., Verbanck, S., Lacor, C.: On the multiple LES frozen field approach for the prediction of particle deposition in the human upper respiratory tract. J. Aerosol Sci. 68, 58–72 (2014). CrossRefGoogle Scholar
  15. 15.
    Lin, C.L., Tawhai, M.H., McLennanc, G., Hoffman, E.A.: Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir. Physiol. Neurobiol. 157(2-3), 295–309 (2007). CrossRefGoogle Scholar
  16. 16.
    Erath, B.D., Plesniak, M.W.: Impact of wall rotation on supraglottal jet stability in voiced speech. Acous. Soc. Amer. 129, EL64 (2011). CrossRefGoogle Scholar
  17. 17.
    Abdelsamie, A., Janiga, G., Thévenin, D.: Spectral entropy as a flow state indicator. Int. J. Heat Fluid Flow 68, 102–113 (2017). CrossRefGoogle Scholar
  18. 18.
    Ritter, F., Boskamp, T., Homeyer, A., Laue, H., Schwier, M., Link, F., Peitgen, H.: Medical image analysis. IEEE Pulse 2(6), 60–70 (2011). CrossRefGoogle Scholar
  19. 19.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turb. Combust. 62(3), 183–200 (1999). CrossRefzbMATHGoogle Scholar
  20. 20.
    Pope, S.B.: Turbulent Flows. Cambridge University Press (2000)Google Scholar
  21. 21.
    Suh, J., Frankel, S.H.: Comparing turbulence models for flow through a rigid glottal model. J. Acoust. Soc. Amer. 123(3), 1237–1240 (2008). CrossRefGoogle Scholar
  22. 22.
    Xue, Q., Zheng, X., Mittal, R., Bielamowicz, S.: Subject-specific computational modeling of human phonation. Acoust. Soc. Amer. 135(3), 1445–1456 (2014). CrossRefGoogle Scholar
  23. 23.
    Calmet, H., Gambaruto, A.M., Bates, A.J., Vázquez, M., Houzeaux, G., Doorly, D.J.: Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation. Comput. Biol. Med. 69, 166–180 (2016). CrossRefGoogle Scholar
  24. 24.
    Varghese, S.S., Frankel, S.H., Fischer, P.F.: Direct numerical simulation of stenotic flows. Part 1: Steady flow. J. Fluid Mech. 582, 253–280 (2007). MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Janiga, G.: Large Eddy simulation of the FDA benchmark nozzle for a Reynolds number of 6500. Comput. Biol. Med. 47, 113–119 (2014). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Fluid Dynamics and Technical FlowsUniversity of Magdeburg “Otto von Guericke”MagdeburgGermany
  2. 2.Department of Otorhinolaryngology, Head and Neck SurgeryUniversity HospitalMagdeburgGermany

Personalised recommendations