Flow, Turbulence and Combustion

, Volume 103, Issue 1, pp 225–246 | Cite as

Effects of Integral Scale on Darrieus–Landau Instability in Turbulent Premixed Flames

  • Weijie Zhang
  • Jinhua WangEmail author
  • Shilong Guo
  • Qianqian Yu
  • Wu Jin
  • Meng Zhang
  • Zuohua Huang


Previous studies have revealed the existence of distinct regimes of DL-stable and unstable turbulent flames, depending on whether the DL instability could be minimized or not. The mechanism of how mixture composition, flame macroscale and turbulence intensity, etc. act on DL instability has been extensively studied. Even though, the role played by turbulent length scale on DL instability is still unclear. The present study has been experimentally focused on the effect of turbulent integral scale on DL instability of premixed turbulent Bunsen flames. Flame fronts of C3H8/air mixture (ϕ = 0.8) under different turbulence conditions are captured by OH-PLIF technique. It is observed that the DL-unstable flames, obtained at relatively large integral scale and with cusps observed on the flame fronts, transform to be DL-stable flames with planar or disorderly wrinkled flame fronts as the integral scale decreases, indicating the indispensable role of integral scale on DL instability. These cusps on DL-unstable flame fronts decrease flame surface density while enlarge flame volume. Turbulent burning velocities of DL-unstable flames are augmented compared to DL-stable flames, leading to a similar dual-propagation model as observed in literatures. The threshold where turbulence shadows DL instability is analyzed by upgrading a previous model of [Phys. Rev. E 84 (2011) 026322]. The modified model is more reliable to demonstrate the DL-stable and unstable regimes in the Peters-Borghi’s diagram.


Turbulent premixed flames Bunsen flames Darrieus–Landau instability Integral scale Turbulent flame diagram 



This study is supported by National Natural Science Foundation of China (No. 51776164, 91441203). The support from The State Key Laboratory of Engines, Tianjin University (K2017-03) and the State Key Laboratory of Laser Interaction with Matter (SKLLIM1508) are also appreciated.

Funding Information

This study was funded by National Natural Science Foundation of China (No. 51776164, 91,441,203).

Compliance with Ethical Standards

Conflict of Interests

The authors declare that they have no conflict of interest.


  1. 1.
    Darrieus, G.: Propagation d’un front de flamme, 1938. Unpublished work, presented at La technique Moderne and in 1945 at Congrès de Mécanique Appliquée, ParisGoogle Scholar
  2. 2.
    L. Landau. On the theory of slow combustion. Acta Physicochim. 1944. USSR 19(−): 77–85Google Scholar
  3. 3.
    Kobayashi, H., Tamura, T., Maruta, K., Niioka, T., Williams, F.A.: Burning velocity of turbulent premixed flames in a high-pressure environment. 26th Symposium (International) on Combustion. 26(1), 389–396 (1996)CrossRefGoogle Scholar
  4. 4.
    Yu, R., Bai, X., Bychkov, V.: Fractal flame structure due to the hydrodynamic Darrieus-Landau instability. Phys. Rev. E. 92(6), 063028 (2015)CrossRefGoogle Scholar
  5. 5.
    Troiani, G., Creta, F., Matalon, M.: Experimental investigation of Darrieus–Landau instability effects on turbulent premixed flames. Proc. Combust. Inst. 35(2), 1451–1459 (2015)CrossRefGoogle Scholar
  6. 6.
    Creta, F., Lamioni, R., Lapenna, P.E., Troiani, G.: Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation. Phys. Rev. E. 94(5), 053102 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fragner, R., Halter, F., Mazellier, N., Chauveau, C., Gökalp, I.: Investigation of pressure effects on the small scale wrinkling of turbulent premixed Bunsen flames. Proc. Combust. Inst. 35(2), 1527–1535 (2015)CrossRefGoogle Scholar
  8. 8.
    Burluka, A., El-Dein Hussin, A.M.T., Sheppard, C.G.W., Liu, K., Sanderson, V.: Turbulent combustion of hydrogen–Co mixtures. Flow Turbul. Combust. 86(3–4), 735–749 (2011)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bychkov, V., Liberman, M.A.: Dynamics and stability of premixed flames. Phys. Rep. 325(4), 115–237 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bychkov, V.: Importance of the Darrieus-Landau instability for strongly corrugated turbulent flames. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 68(6 Pt 2), 066304 (2003)CrossRefGoogle Scholar
  11. 11.
    Akkerman, V., Bychkov, V.: Turbulent flame and the darrieus–landau instability in a three-dimensional flow. Combust. Theor. Model. 7(4), 767–794 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Akkerman, V., Bychkov, V.: Velocity of weakly turbulent flames of finite thickness. Combust. Theor. Model. 9(2), 323–351 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bychkov, V., Petchenko, A., Akkerman, V.: On the theory of turbulent flame velocity. Combust. Sci. Technol. 179(1–2), 137–151 (2007)CrossRefGoogle Scholar
  14. 14.
    Bauwens, C.R., Bergthorson, J.M., Dorofeev, S.B.: On the interaction of the Darrieus–Landau instability with weak initial turbulence. Proc. Combust. Inst. 36(2), 2815–2822 (2017)CrossRefGoogle Scholar
  15. 15.
    Yang, S., Saha, A., Liu, Z., Law, C.K.: Role of Darrieus–Landau instability in propagation of expanding turbulent flames. J. Fluid Mech. 850, 784–802 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Creta, F., Matalon, M.: Strain rate effects on the nonlinear development of hydrodynamically unstable flames. Proc. Combust. Inst. 33(1), 1087–1094 (2011)CrossRefGoogle Scholar
  17. 17.
    Fogla, N., Creta, F., Matalon, M.: The turbulent flame speed for low-to-moderate turbulence intensities: hydrodynamic theory vs. experiments. Combust. Flame. 175, 155–169 (2017)CrossRefGoogle Scholar
  18. 18.
    Law, C., Sung, C.: Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energy Combust. Sci. 26(4), 459–505 (2000)CrossRefGoogle Scholar
  19. 19.
    Matalon, M., Creta, F.: The “turbulent flame speed” of wrinkled premixed flames. Comptes Rendus Mécanique. 340(11–12), 845–858 (2012)CrossRefGoogle Scholar
  20. 20.
    Akkerman, V., Chaudhuri, S., Law, C.K.: Accelerative propagation and explosion triggering by expanding turbulent premixed flames. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 87(2), 023008 (2013)CrossRefGoogle Scholar
  21. 21.
    Driscoll, J.: Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34(1), 91–134 (2008)CrossRefGoogle Scholar
  22. 22.
    Lipatnikov, A., Chomiak, J.: Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Prog. Energy Combust. Sci. 28(1), 1–74 (2002)CrossRefGoogle Scholar
  23. 23.
    Pocheau, A.: Scale invariance in turbulent front propagation. Phys. Rev. E. 49(2), 1109–1122 (1994)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Boughanem, H., Trouvé, A.: The domain of influence of flame instabilities in turbulent premixed combustion. Symp. Combust. 27(1), 971–978 (1998)CrossRefGoogle Scholar
  25. 25.
    Chaudhuri, S., Akkerman, V., Law, C.K.: Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E. 84, 026322 (2011)CrossRefGoogle Scholar
  26. 26.
    Barrett, M.J., Hollingsworth, D.K.: On the calculation of length scales for turbulent heat transfer correlation. J. Heat Transf. 123(5), 878–883 (2001)CrossRefGoogle Scholar
  27. 27.
    Zhang, M., Wang, J., Jin, W., Huang, Z., Kobayashi, H., Ma, L.: Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame. Combust. Flame. 162(5), 2087–2097 (2015)CrossRefGoogle Scholar
  28. 28.
    Zhang, M., Wang, J., Xie, Y., Wei, Z., Jin, W., Huang, Z., Kobayashi, H.: Measurement on instantaneous flame front structure of turbulent premixed CH4/H2/air flames. Exp. Thermal Fluid Sci. 52(1), 288–296 (2014)CrossRefGoogle Scholar
  29. 29.
    Zhang, W., Wang, J., Yu, Q., Jin, W., Zhang, M., Huang, Z.: Investigation of the fuel effects on burning velocity and flame structure of turbulent premixed flames based on leading points concept. Combust. Sci. Technol. 11, 1–23 (2018)Google Scholar
  30. 30.
    Zhang, M., Wang, J., Xie, Y., Jin, W., Wei, Z., Huang, Z., Kobayashi, H.: Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames. Int. J. Hydrog. Energy. 38(26), 11421–11428 (2013)CrossRefGoogle Scholar
  31. 31.
    Marshall, A., Lundrigan, J., Venkateswaran, P., Seitzman, J., Lieuwen, T.: Fuel effects on leading point curvature statistics of high hydrogen content fuels. Proc. Combust. Inst. 35(2), 1417–1424 (2015)CrossRefGoogle Scholar
  32. 32.
    Marshall, A., Venkateswaran, P., Seitzman, J., Lieuwen, T.: Measurements of leading point conditioned statistics of high hydrogen content fuels. The 8th US National Combustion Meeting, Park City, Utah, 2013, May19–22Google Scholar
  33. 33.
    Lee, T.W., North, G.L., Santavicca, D.A.: Surface properties of turbulent premixed propane/air flames at various Lewis numbers. Combust. Flame. 93(4), 445–456 (1993)CrossRefGoogle Scholar
  34. 34.
    Lee, T.W., North, G.L., Santavicca, D.A.: Curvature and orientation statistics of turbulent premixed flame fronts. Combust. Sci. Technol. 84(1), 121–132 (1992)CrossRefGoogle Scholar
  35. 35.
    Wang, J., Zhang, M., Huang, Z., Kudo, T., Kobayashi, H.: Measurement of the instantaneous flame front structure of syngas turbulent premixed flames at high pressure. Combust. Flame. 160(11), 2434–2441 (2013)CrossRefGoogle Scholar
  36. 36.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B, Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S. and Gardiner, W.C. Jr. GRI-Mech 3.0. Chicago, IL: Gas Research Inst. 2000. Available from
  37. 37.
    Pelce, P., Clavin, P.: Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219–237 (1982)CrossRefzbMATHGoogle Scholar
  38. 38.
    Matalon, M.: Flame dynamics. Proc. Combust. Inst. 32(1), 57–82 (2009)CrossRefGoogle Scholar
  39. 39.
    Joanes, D.N., Gill, C.A.: Comparing measures of sample skewness and kurtosis. J. R. Stat. Soc. Series D (The Statistician). 47(1), 183–189 (1998)CrossRefGoogle Scholar
  40. 40.
    Cramer, D.: Basic statistics for social research. Routeledge, New York (1997)Google Scholar
  41. 41.
    Bulmer, M.G.: Principles of statistics, 2nd edn. Dover, New York (1979)zbMATHGoogle Scholar
  42. 42.
    Creta, F., Fogla, N., Matalon, M.: Turbulent propagation of premixed flames in the presence of Darrieus–Landau instability. Combust. Theor. Model. 15(2), 267–298 (2011)CrossRefzbMATHGoogle Scholar
  43. 43.
    Kobayashi, H., Kawabata, Y., Maruta, K.: Experimental study on general correlation of turbulent burning velocity at high pressure. 27th Symposium (International) on Combustion. 27(1), 941–948 (1998)CrossRefGoogle Scholar
  44. 44.
    Kostiuk, L., Cheng, R.: The coupling of conical wrinkled laminar flames with gravity. Combust. Flame. 103(1–2), 27–40 (1995)CrossRefGoogle Scholar
  45. 45.
    Filatyev, S.A., Driscoll, J.F., Carter, C.D., Donbar, J.M.: Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates, and surface densities. Combust. Flame. 141(1–2), 1–21 (2005)CrossRefGoogle Scholar
  46. 46.
    Tamadonfar, P., Gülder, Ö.L.: Effects of mixture composition and turbulence intensity on flame front structure and burning velocities of premixed turbulent hydrocarbon/air Bunsen flames. Combust. Flame. 162(12), 4417–4441 (2015)CrossRefGoogle Scholar
  47. 47.
    Chaudhuri, S., Wu, F., Law, C.K.: Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 88(3), 033005 (2013)CrossRefGoogle Scholar
  48. 48.
    Chaudhuri, S., Wu, F., Zhu, D., Law, C.K.: Flame speed and self-similar propagation of expanding turbulent premixed flames. Phys. Rev. Lett. 108(4), 044503 (2012)CrossRefGoogle Scholar
  49. 49.
    Law, C.K.: Combustion physics. Cambridge university press, New York (2010)Google Scholar
  50. 50.
    Peters, N.: Turbulent combustion. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  51. 51.
    Borghi, R.: On the structure and morphology of turbulent premixed flames. Pleunm Press, New York (1985)CrossRefGoogle Scholar
  52. 52.
    Batchelor, G.K.: The effect of homogeneous turbulence on material lines and surfaces. Proc. R. Soc. Lond. 213(1114), 349–366 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Lipatnikov, A.N.: Fundamentals of premixed turbulent combustion. CRC Press, Boca Raton (2012)CrossRefGoogle Scholar
  54. 54.
    Meneveau, C., Poinsot, T.: Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame. 86(4), 311–332 (1991)CrossRefGoogle Scholar
  55. 55.
    Williams, F.: Criteria for existence of wrinkled laminar flame structure of turbulent premixed flames. Combust. Flame. 26(76), 269–270 (1976)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Multiphase Flow in Power EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.College of Energy and Power EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations