Experimental and Applied Acarology

, Volume 79, Issue 3–4, pp 421–432 | Cite as

The mitochondrial genome of the ornate sheep tick, Dermacentor marginatus

  • Yan-Kai Zhang
  • Zhi-Jun Yu
  • Xiao-Yu Zhang
  • Víchová Bronislava
  • Peťko Branislav
  • Jing-Ze LiuEmail author


The ornate sheep tick, Dermacentor marginatus, is widespread in Europe. Its vector role of various zoonotic pathogens received much attention in these regions. However, the genomic resources of the ticks are limited. In this study, the complete mitochondrial genome of a single female D. marginatus collected in Slovakia was sequenced through the Illumina HiSeq sequencing platform. The mitochondrial genome is 15,067 bp long and contains 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes. The overall G+C content is 21.6%. The gene order is identical to that of Metastriata ticks. The codon usage pattern is similar with that of other tick species. As in other ticks, two truncated tRNA genes were observed. Two control regions were found between tRNA-Leu and tRNA-Cys, tRNA-Ile and rrnS, respectively. The mitochondrial genome contains three noncoding regions, which is similar to that in D. nitens. The noncoding region located between rrnS and tRNA-Val is shorter than that of other Dermacentor species. Phylogenetic analyses indicate that D. marginatus is clustered with other Dermacentor species. These findings are helpful for exploring the systematics and evolution of ticks in the future.


Mitochondrial genome Dermacentor marginatus High-throughput sequencing Phylogenetic analysis 



We thank Dr. Tian-Hong Wang of Hebei Normal University for his kind help in data analyses. This study was supported by Scientific and Technological Cooperation Project of China and Slovakia (7–12; APVV-SK-CN-2015-0010), Advanced Talents of Hebei Normal University (Grant No. L2018B15), Natural Science Foundation of Hebei province (Grant No. C2018205211) and National Natural Science Foundation of China (Grant No. 31802008), Project of the Slovak Scientific Grant Agency VEGA (No. 2/0126/16).

Supplementary material

10493_2019_440_MOESM1_ESM.tif (599 kb)
Electronic supplementary material 1 (TIF 599 kb)
10493_2019_440_MOESM2_ESM.docx (17 kb)
Electronic supplementary material 2 (DOCX 17 kb)


  1. Beati L, Keirans JE (2001) Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological characters. J Parasitol 87:32–48.[0032:AOTSRA]2.0.CO;2 CrossRefPubMedGoogle Scholar
  2. Beati L, Klompen H (2019) Phylogeography of ticks (Acari: Ixodida). Ann Rev Entomol 64:1–19. CrossRefGoogle Scholar
  3. Black WC IV, Roehrdanz RL (1998) Mitochondrial gene order is not conserved in arthropods: prostriate and metastriate tick mitochondrial genomes. Mol Biol Evol 15:1772–1785. CrossRefPubMedGoogle Scholar
  4. Buczek A, Bartosik K, Zając Z, Stanko M (2015) Host-feeding behaviour of Dermacentor reticulatus and Dermacentor marginatus in mono-specific and inter-specific infestations. Parasite Vector 8:470. CrossRefGoogle Scholar
  5. Burger TD, Shao R, Barker SC (2013) Phylogenetic analysis of the mitochondrial genomes and nuclear rRNA genes of ticks reveals a deep phylogenetic structure within the genus Haemaphysalis and further elucidates the polyphyly of the genus Amblyomma with respect to Amblyomma sphenodonti and Amblyomma elaphense. Ticks Tick-Borne Dis 4:265–274. CrossRefPubMedGoogle Scholar
  6. Burger TD, Shao R, Beati L, Miller H, Barker SC (2012) Phylogenetic analysis of ticks (Acari: Ixodida) using mitochondrial genomes and nuclear rRNA genes indicates that the genus Amblyomma is polyphyletic. Mol Phylogenet Evol 64:45–55. CrossRefPubMedGoogle Scholar
  7. Burger TD, Shao R, Labruna MB, Barker SC (2014) Molecular phylogeny of soft ticks (Ixodida: Argasidae) inferred from mitochondrial genome and nuclear rRNA sequences. Ticks Tick-Borne Dis 5:195–207. CrossRefPubMedGoogle Scholar
  8. Cameron SL (2014) Insect mitochondrial genomics: implications for evolution and phylogeny. Ann Rev Entomol 59:95–117. CrossRefGoogle Scholar
  9. Chen DS, Jin PY, Zhang KJ, Ding XL, Yang SX, Ju JF, Zhao JY, Hong XY (2014) The complete mitochondrial genomes of six species of Tetranychus provide insights into the phylogeny and evolution of spider mites. PLoS ONE 9:e110625. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Conant GC, Wolfe KH (2008) GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics 24:861–862. CrossRefPubMedGoogle Scholar
  11. Dantas-Torres F, Chomel BB, Otranto D (2012) Ticks and tick-borne diseases: a One Health perspective. Trends Parasitol 28:437–446. CrossRefGoogle Scholar
  12. Darvishi MM, Youssefi MR, Changizi E, Shayan P, Lima RR, Rahimi MT (2014) Biology of Dermacentor marginatus (Acari: Ixodidae) under laboratory conditions. Asian Pac J Trop Dis 4:S284–S289. CrossRefGoogle Scholar
  13. Guo DH, Zhang Y, Fu X, Gao Y, Liu YT, Qiu JH, Chang QC, Wang CR (2016) Complete mitochondrial genomes of Dermacentor silvarum and comparative analyses with another hard tick Dermacentor nitens. Exp Parasitol 169:22–27. CrossRefPubMedGoogle Scholar
  14. Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads-a baiting and iterative mapping approach. Nucleic Acids Res 41:e129–e129. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hornok S, Kontschán J, Estrada-Peña A, De Mera IGF, Tomanović S, De La Fuente J (2015) Contributions to the morphology and phylogeny of the newly discovered bat tick species, Ixodes ariadnae in comparison with I. vespertilionis and I. simplex. Parasite Vector 8:47. CrossRefGoogle Scholar
  16. Jeyaprakash A, Hoy MA (2009) First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. Exp Appl Acarol 47:1–18. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129:S3–S14. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. CrossRefGoogle Scholar
  19. Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773. CrossRefGoogle Scholar
  20. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Li WN, Xue XF (2019) Mitochondrial genome reorganization provides insights into the relationship between oribatid mites and astigmatid mites (Acari: Sarcoptiformes: Oribatida). Zool J Linn Soc-Lond. CrossRefGoogle Scholar
  22. Mans BJ, Featherston J, Kvas M, Pillay KA, de Klerk DG, Pienaar R, de Castro MH, Schwan TG, Lopez JE, Teel P, Perez de León AA, Sonenshine DE, Egekwu NI, Bakkes DK, Heyne H, Kanduma EG, Nyangiwe N, Bouattour A, Latif AA (2019) Argasid and ixodid systematics: implications for soft tick evolution and systematics, with a new argasid species list. Ticks Tick-Borne Dis 10:219–240CrossRefGoogle Scholar
  23. Masta SE, Boore JL (2008) Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes. Mol Biol Evol 25:949–959. CrossRefPubMedGoogle Scholar
  24. Moshaverinia A, Shayan P, Nabian S, Rahbari S (2009) Genetic evidence for conspecificity between Dermacentor marginatus and Dermacentor niveus. Parasitol Res 105:1125–1132. CrossRefPubMedGoogle Scholar
  25. Murrell A, Campbell NJ, Barker SC (2001) A total-evidence phylogeny of ticks provides insights into the evolution of life cycles and biogeography. Mol Phylogenet Evol 21:244–258. CrossRefPubMedGoogle Scholar
  26. Nava S, Guglielmone AA, Mangold AJ (2009) An overview of systematics and evolution of ticks. Front Biosci 14:2857–2877. CrossRefGoogle Scholar
  27. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2014) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Norris DE, Klompen JSH, Black WC (1999) Comparison of the mitochondrial 12S and 16S ribosomal DNA genes in resolving phylogenetic relationships among hard ticks (Acari: Ixodidae). Ann Entomol Soc Am 92:117–129. CrossRefGoogle Scholar
  29. Parola P, Raoult D (2001) Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 32:897–928. CrossRefPubMedGoogle Scholar
  30. Rambaut A (2012) FigTree v1. 4.0. A graphical viewer of phylogenetic trees. See
  31. Rubel F, Brugger K, Pfeffer M, Chitimia-Dobler L, Didyk YM, Leverenz S, Dautel H, Kahl O (2016) Geographical distribution of Dermacentor marginatus and Dermacentor reticulatus in Europe. Ticks Tick-Borne Dis 7:224–233. CrossRefPubMedGoogle Scholar
  32. Selmi M, Tomassone L, Ceballos LA, Crisci A, Ragagli C, Pintore MD, Mignone W, Pautasso A, Ballardini M, Casalone C, Mannelli A, Mannelli A (2018) Analysis of the environmental and host-related factors affecting the distribution of the tick Dermacentor marginatus. Exp Appl Acarol 75:209–225. CrossRefPubMedGoogle Scholar
  33. Shao R, Barker SC (2007) Mitochondrial genomes of parasitic arthropods: implications for studies of population genetics and evolution. Parasitology 134:153–167. CrossRefPubMedGoogle Scholar
  34. Shao R, Barker SC, Mitani H, Aoki Y, Fukunaga M (2004) Evolution of duplicate control regions in the mitochondrial genomes of metazoa: a case study with Australasian Ixodes ticks. Mol Biol Evol 22:620–629. CrossRefPubMedGoogle Scholar
  35. Shaw SE, Day MJ, Birtles RJ, Breitschwerdt EB (2001) Tick-borne infectious diseases of dogs. Trends Parasitol 17:74–80. CrossRefPubMedGoogle Scholar
  36. Sonenshine DE, Roe RM (2013) Biology of ticks, vol 2. Oxford University Press, New YorkGoogle Scholar
  37. Špitalská E, Štefanidesová K, Kocianová E, Boldiš V (2012) Rickettsia slovaca and Rickettsia raoultii in Dermacentor marginatus and Dermacentor reticulatus ticks from Slovak Republic. Exp Appl Acarol 57:189–197. CrossRefPubMedGoogle Scholar
  38. Walter M, Brugger K, Rubel F (2016) The ecological niche of Dermacentor marginatus in Germany. Parasitol Res 115:2165–2174. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Williams-Newkirk AJ, Burroughs M, Changayil SS, Dasch GA (2015) The mitochondrial genome of the lone star tick (Amblyomma americanum). Ticks Tick-Borne Dis 6:793–801. CrossRefPubMedGoogle Scholar
  40. Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216CrossRefGoogle Scholar
  41. Xue XF, Deng W, Qu SX, Hong XY, Shao R (2018) The mitochondrial genomes of sarcoptiform mites: are any transfer RNA genes really lost? BMC Genomics 19(1):466. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ye F, Samuels DC, Clark T, Guo Y (2014) High-throughput sequencing in mitochondrial DNA research. Mitochondrion 17:157–163. CrossRefPubMedGoogle Scholar
  43. Yu Z, Zhang S, Wang T, Yang X, Wang H, Liu J (2018) The mitochondrial genome and phylogenetic analysis of the tick Dermacentor everestianus Hirst, 1926 (Acari: Ixodidae). Syst Appl Acarol 23:1313–1322. CrossRefGoogle Scholar
  44. Zahler M, Gothe R (1997) Evidence for the reproductive isolation of Dermacentor marginatus and Dermacentor reticulatus (Acari: Ixodidae) ticks based on cross-breeding, morphology and molecular studies. Exp Appl Acarol 21:685–696. CrossRefPubMedGoogle Scholar
  45. Zhang D, Gao F, Li WX, Jakovlić I, Zou H, Zhang J, Wang GT (2018) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. bioRxiv. CrossRefGoogle Scholar
  46. Zhang YK, Yu ZJ, Wang D, Bronislava V, Branislav P, Liu JZ (2019) The bacterial microbiome of field-collected Dermacentor marginatus and Dermacentor reticulatus from Slovakia. Parasite Vector 12:325. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yan-Kai Zhang
    • 1
  • Zhi-Jun Yu
    • 1
  • Xiao-Yu Zhang
    • 1
  • Víchová Bronislava
    • 2
  • Peťko Branislav
    • 2
    • 3
  • Jing-Ze Liu
    • 1
    Email author
  1. 1.Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
  2. 2.Institute of ParasitologySlovak Academy of SciencesKošiceSlovak Republic
  3. 3.University of Veterinary Medicine and Farmacy in KošiceKošiceSlovak Republic

Personalised recommendations