Advertisement

Ticks and accompanying pathogens of domestic and wild animals of Kerala, South India

  • Murikoli Nimisha
  • Jeena Kaitharath Devassy
  • Rangapura Kariyappa Pradeep
  • Vidya Pakideery
  • Meethalae Koombayil Sruthi
  • Anu Pious
  • Prashant Somalingappa Kurbet
  • Birur Mallappa Amrutha
  • Leena Chandrasekhar
  • Chundayil Kalarikkal Deepa
  • Karapparambu Gopalan Ajithkumar
  • Anju Varghese
  • Sanis Juliet
  • Chemmangattuvalappil Narendranath Dinesh
  • Suresh Narayanan Nair
  • George Chandy
  • Srikant Ghosh
  • Reghu RavindranEmail author
Article

Abstract

The objective of the present study was to detect the chosen nucleotide DNA or RNA sequences of the pathogens in ticks of domestic and wild animals of Kerala, South India based on molecular techniques. Among 602 ticks collected, 413 were from bovines (cattle and buffalo), 26 from goats, 101 from dogs and 62 from wild animals. Amblyomma integrum, Am. gervaisi, Dermacentor auratus, Haemaphysalis bispinosa, Ha. intermedia, Ha. shimoga, Ha. spinigera, Rhipicephalus annulatus, Rh. microplus, Rh. haemaphysaloides and Rh. sanguineus s.l. were identified from various domestic and wild animals of Kerala. The cDNA synthesized from the RNA isolated from fully or partially engorged adult female/nymphal ticks was used as template for the specific polymerase chain reactions (PCR). Out of 602 ticks examined, nucleotide sequences of pathogens were detected in 28 ticks (4.65%). The nucleotide sequences of tick-borne pathogens like Theileria orientalis, Babesia vogeli, Hepatozoon canis, Anaplasma marginale, An. bovis, Rickettsia sp. closely related to Ri. raoultii, Ri. massiliae, Ri. africae and Ri. slovaca were detected. The identification of the previously unreported nucleotide sequences of rickettsial pathogens from India is of particular interest due to their zoonotic significance. The phylogenetic analysis of the major piroplasm surface protein (MPSP) gene of T. orientalis amplified from Rh. annulatus ticks revealed that they were genetically close to type 7, which belong to the highly pathogenic Ikeda group.

Keywords

Animals Ticks Tick-borne pathogens Nucleotide sequences PCR South India 

Notes

Acknowledgements

This work was supported financially by the Kerala State Council for Science, Technology, and Environment (022/YIPB/KBC/2013/CSTE, 010-14/SARD/13/CSTE), Indian Council of Agricultural Research (NAIP/C2066, NFBSFARA/BSA-4004/2013-14, NASF/ABA-6015/2016-17) and Department of Animal Husbandry, Kerala [B2.3858/04/Plg(3) dt.2/2/07, B2.8401/08/Plg dt.19/18/2008].

References

  1. Abdigoudarzi M (2013) Detection of naturally infected vector ticks (Acari: Ixodidae) by different species of Babesia and Theileria agents from three different enzootic parts of Iran. J Arthropod Borne Dis 7:164–172Google Scholar
  2. Abd-Rani PAM, Irwin PJ, Coleman GT, Gatne M, Traub RJ (2011) A survey of canine tick-borne diseases in India. Parasit Vectors 4:141–148CrossRefGoogle Scholar
  3. Annual Report (2015–2016) National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI-ICAR), BangaloreGoogle Scholar
  4. Aparna M, Ravindran R, Vimalkumar MB, Lakshmanan B, Rameshkumar P, Ajithkumar KG, Promod K, Ajithkumar S, Ravishankar C, Devada K, Subramanian H, George AJ, Ghosh S (2011) Molecular characterization of Theileria orientalis causing fatal infection in crossbred adult bovines of South India. Parasitol Int 60:524–529CrossRefGoogle Scholar
  5. Aparna M, Vimal Kumar MB, Varghese S, Sentilvel K, Ajithkumar KG, Raji K, Syamala K, Priya MN, Deepa CK, Jyothimol G, Juliet S, Chandrasekhar L, Ravindran R (2013) Phylogenetic analysis of bovine Theileria spp. isolated in south India. Trop Biomed 30:281–290Google Scholar
  6. Araujo AC, Silveira JAG, Azevedo SS, Nieri-Bastos FA, Ribeiro MFB, Labruna MB, Horta MC (2015) Babesia canis vogeli infection in dogs and ticks in the semiarid region of Pernambuco, Brazil. Pesq Vet Bras 35:456–461CrossRefGoogle Scholar
  7. Auffenberg W, Auffenberg T (1990) The reptile tick Aponomma gervaisi (Acarina: Ixodidae) as a parasite of monitor lizard in Pakistan and India. Biol Sci 35:1–34Google Scholar
  8. Augustine S, Sabu L, Lakshmanan B (2017) Molecular identification of Babesia spp. in naturally infected dogs of Kerala. J Parasit Dis 41:459–462CrossRefGoogle Scholar
  9. Baneth G, Samish M, Alekseev E, Aroch I, Shkap V (2001) Transmission of Hepatozoon canis to dogs by naturally-fed or percutaneously-injected Rhipicephalus sanguineus ticks. J Parasitol 87:606–611CrossRefGoogle Scholar
  10. Crampton A, McKay I, Barker S (1996) Phylogeny of ticks (Ixodida) inferred from nuclear ribosomal DNA. Int J Parasitol 26:511–517CrossRefGoogle Scholar
  11. Devada K, Abraham MJ, Ajithkumar S, Balakrishnan VS (1996) Hepatozoon canis in a pup-case report. J Vet Anim Sci 27:173–174Google Scholar
  12. Esteves E, Bastos CV, Zivkovic Z, de La Fuente J, Kocan K, Blouin E, Ribeiro MFB, Passos LMF, Daffre S (2009) Propagation of a Brazilian isolate of Anaplasma marginale with appendage in a tick cell line (BME26) derived from Rhipicephalus (Boophilus) microplus. Vet Parasitol 161:150–153CrossRefGoogle Scholar
  13. Estrada-Peña A, Gray JS, Kahl O, Lane RS, Nijhof AM (2013) Research on the ecology of ticks and tick-borne pathogens—methodological principles and caveats. Front Cell Infect Microbiol 3:29CrossRefGoogle Scholar
  14. Fukumoto S, Hiroshi S, Igarashi I, Xuan X (2005) Fatal experimental transplacental Babesia gibsoni infections in dogs. Int J Parasitol 35:1031–1035CrossRefGoogle Scholar
  15. Geevarghese G, Mishra AC (2011) Haemaphysalis ticks of India, 1st edn. Elsevier, New YorkGoogle Scholar
  16. Ghosh S, Nagar G (2014) Problem of ticks and tick-borne diseases in India with special emphasis on progress in tick control research: a review. J Vector Dis 51:259–270Google Scholar
  17. Ghosh S, Azhahianambi P, de la Fuente J (2006) Control of ticks of ruminants, with special emphasis on livestock farming systems in India: present and future possibilities for integrated control—a review. Exp Appl Acarol 40:49–66CrossRefGoogle Scholar
  18. Ghosh S, Azhahianambi P, Yadav MP (2007) Upcoming and future strategies of tick control: a review. J Vector Borne Dis 44:79–89Google Scholar
  19. Giannelli A, Ramos RAN, Paola GD, Mencke N, Dantas-Torres F, Baneth G, Otranto D (2013) Transstadial transmission of Hepatozoon canis from larvae to nymphs of Rhipicephalus sanguineus. Vet Parasitol 196:1–5CrossRefGoogle Scholar
  20. Inokuma H, Raoult D, Brouqui P (2000) Detection of Ehrlichia platys DNA in brown dog ticks (Rhipicephalus sanguineus) in Okinawa Island, Japan. J Clin Microbiol 38:4219–4221Google Scholar
  21. Inokuma H, Okuda M, Ohno K, Shimoda K, Onishi T (2002) Analysis of the 18S rRNA gene sequence of a Hepatozoon detected in two Japanese dogs. Vet Parasitol 106:265–271CrossRefGoogle Scholar
  22. Inokuma H, Yoshizaki Y, Shimada Y, Sakata Y, Okuda M, Onishi T (2003) Epidemiological survey of Babesia species in Japan performed with specimens from ticks collected from dogs and detection of new Babesia DNA closely related to Babesia odocoilei and Babesia divergens DNA. J Clin Microbiol 41:3494–3498CrossRefGoogle Scholar
  23. Jefferies R, Ryan UM, Jardine J, Broughton DK, Robertson ID, Irwin PJ (2007) Blood, Bull Terriers and Babesiosis: further evidence for direct transmission of Babesia gibsoni in dogs. Aust Vet J 85:459–463CrossRefGoogle Scholar
  24. Joshi HS, Thomas M, Warrier A, Kumar S (2012) Gangrene in cases of spotted fever: a report of three cases. BMJ Case Rep 2012:bcr2012007295CrossRefGoogle Scholar
  25. Kahl O, Gern L, Eisen L, Lane RS (2002) Ecological research on Borrelia burgdorferi sensu lato: terminology and some methodological pitfalls. In: Gray J, Kahl O, Lane RS, Stanek G (eds) Lyme borreliosis: biology, epidemiology and control. CABI Publishing, New York, pp 29–46CrossRefGoogle Scholar
  26. Kakati P, Sarmah PC, Ray D, Bhattacharjee K, Sharma RK, Barkalita LM, Sarma DK, Baishya BC, Borah P, Stanley B (2015) Emergence of oriental theileriosis in cattle and its transmission through Rhipicephalus (Boophilus) microplus in Assam, India. Vet World 8:1099–1104CrossRefGoogle Scholar
  27. Kamani J, Baneth G, Mumcuoglu KY, Waziri NE, Eyal O, Guthmann Y, Harrus S (2013) Molecular detection and characterization of tick-borne pathogens in dogs and ticks from Nigeria. PLoS Negl Trop Dis 7:e2108.  https://doi.org/10.1371/journal.pntd.0002108 CrossRefGoogle Scholar
  28. Kariyappa PR, Ravindran R, Nimisha M, Amrutha BM, Kurbet PS, Kumar KGA, Varghese A, Deepa CK, Dinesh CN (2017) Prevalence of bovine babesiosis and theileriosis in Kerala, India. Int J Curr Microbiol Appl Sci 6:2310–2314CrossRefGoogle Scholar
  29. Kawahara M, Rikihisa Y, Lin Q, Isogai E, Tahara K, Itagaki A, Hiramitsu Y, Tajima T (2006) Novel genetic variants of Anaplasma phagocytophilumA. bovisA. centrale, and a Novel Ehrlichia sp. in wild deer and ticks on two major islands in Japan. Appl Environ Microbiol 72:1102–1109CrossRefGoogle Scholar
  30. Khukhuu A, Lan DTB, Long PT, Ueno A, Li Y, Luo Y, Macedo ACC, Matsumoto K, Inokuma H, Kawazu SI, Igarashi I, Xuan X, Yokoyama N (2011) Molecular epidemiological survey of Theileria orientalis in Thua Thien Hue province, Vietnam. J Vet Med Sci 73:701–705CrossRefGoogle Scholar
  31. Kolte SW, Larcombe SD, Jadhao SG, Magar SP, Warthi G, Kurkure NV, Glass EJ, Shiels BR (2017) PCR diagnosis of tick-borne pathogens in Maharashtra state, India indicates fitness cost associated with carrier infections is greater for crossbreed than native cattle breeds. PLoS ONE.  https://doi.org/10.1371/journal.pone.0174595 Google Scholar
  32. Kumar R, Paul S, Kumar S, Sharma AK, Gupta S, Rawat AKS, Chaudhuri P, Ray DD, Ghosh S (2011) Nucleotide specific changes in the hypervariable region of 16S rDNA gene as possible marker to differentiate the tick genera. Indian J Anim Sci 81:1204–1207Google Scholar
  33. Kumar KGA, Ravindran R, Ghosh S (2012) First report of Dermacentor auratus Supino, 1897 (Acarina, Ixodidae) from Wayanad, Kerala. Indian J Med Res 135:435–436Google Scholar
  34. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  35. Kumar KGA, Ravindran R, Johns J, Chandy G, Rajagopal K, Chandrasekhar L, George AJ, Ghosh S (2018) Ixodid tick vectors of wild mammals and reptiles of southern India. J Arthropod Borne Dis 12:276–285Google Scholar
  36. Kuo-Fan T (1991) Acari: Ixodidae. Econ Insect Fauna China 39:1–359Google Scholar
  37. Labruna MB, Whitworth T, Mauricio CH, Bouyer H, McBridge JW, Pinter A, Popov V, Gennari SM, Walker DH (2004) Rickettsia species infecting Amblyomma cooperi ticks from an area in the state of Sao Paulo, Brazil, where Brazilin spotted fever is endemic. J Clin Microbiol 42:90–98CrossRefGoogle Scholar
  38. Lakshmanan B, Jose KJ, George A, Usha NP, Devada K (2018) Molecular detection of Hepatozoon canis in dogs from Kerala. J Parasit Dis 42:287–290CrossRefGoogle Scholar
  39. Latrofa MS, Torres FD, Giannelli A, Otranto D (2014) Molecular detection of tick-borne pathogens in Rhipicephalus sanguineus group ticks. Ticks Tick Borne Dis 5:943–946CrossRefGoogle Scholar
  40. Mahalingaiah MKC, Asoor M, Thimmaiah RP, Narayanaswamy HD, Mukartal SY, Elattuvalappil AM, Chikkahonnaiah N, Gupta S, Singh S (2017) Prevalence of canine babesiosis in different breeds of dogs in and around Bengaluru. Adv Anim Vet Sci 5:140–144CrossRefGoogle Scholar
  41. Manjunathachar HV, Saravanan BC, Kesavan M, Karthik K, Rathod P, Gopi M, Tamilmahan P, Balaraju BL (2014) Economic importance of ticks and their effective control strategies. Asian Pac J Trop Dis 4:770–779CrossRefGoogle Scholar
  42. Matjila PT, Penzhorn BL, Bekker CPJ, Nijhof AM, Jongejan F (2004) Confirmation of occurrence Babesia canis vogeli in domestic dogs in South Africa. Vet Parasitol 122:119–125CrossRefGoogle Scholar
  43. Mediannikov OY, Sideonikov Y, Ivanov L, Mokressova E, Fournier PE, Tarasevich I, Raoult D (2004) Acute tick borne rickettsiosis, caused by Rickettsia heilongjiangensis variant in the Russian Far East. Emerg Infect Dis 10:810–817CrossRefGoogle Scholar
  44. Naicke PR (2011) The impact of climate change and other factors on zoonotic diseases. Arch Clin Microbiol 2:1–5Google Scholar
  45. Nair AS, Ravindran R, Lakshmanan B, Kumar SS, Tresamol PV, Saseendranath MR, Senthilvel K, Rao JR, Tewari AK, Ghosh S (2011) Haemoprotozoa of cattle in Northern Kerala, India. Trop Biomed 28:68–75Google Scholar
  46. Nair AS, Ravindran R, Lakshmanan B, Sreekumar C, Kumar SS, Raju Remya, Tresamol PV, Vimalkumar MB, Saseendranath MR (2013) Bovine carriers of Anaplasma marginale and Anaplasma bovis in South India. Trop Biomed 30:105–112Google Scholar
  47. Nimisha M, Pradeep RK, Kurbet PS, Amrutha BM, Varghese A, Deepa CK, Priya MN, Lakshmanan B, Kumar KGA, Ravindran R (2017) Parasitic diseases of domestic and wild animals in northern Kerala: a retrospective study based on clinical samples. Int J Curr Microbiol Appl Sci 6:2381–2392CrossRefGoogle Scholar
  48. Palomar AM, Portillo A, Santibáñez P, Mazuelas D, Roncero L, García-Álvarez L, Santibáñez S, Gutiérrez Ó, Oteo JA (2015) Detection of tick-borne Anaplasma bovis, A. phagocytophilum and A. centrale in Spain. Med Vet Entomol 29:349–353CrossRefGoogle Scholar
  49. Parola P, Paddock CD, Raoult D (2005) Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin Microbiol Rev 18:719–756CrossRefGoogle Scholar
  50. Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernif T, Abdad MY, Stenos J, Bitam I, Fournier P, Raoult D (2013) Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev 26:657–702CrossRefGoogle Scholar
  51. Ponnudurai G, Larcombe S, Velusamy R, Rani N, Kolte SW, Rubinibala B, Alagesan A, Rekha B, Shiels B (2017) Prevalence of tick-borne pathogens in co-grazed dairy bovines differs by region and host-type in Tamil Nadu, India. J Adv Dairy Res 5:177Google Scholar
  52. Pradeep RK, Nimisha M, Sruthi MK, Pakideery V, Amrutha BM, Kurbet PS, Kumar KGA, Varghese A, Deepa CK, Dinesh CN, Chandrasekhar L, Juliet S, Pradeepkumar PR, Ravishankar C, Ghosh S, Ravindran R (2019) Molecular characterization of South Indian field isolates of bovine Babesia spp. and Anaplasma spp. Parasitol Res 118:617–630CrossRefGoogle Scholar
  53. Rathi N, Rathi A (2010) Rickettsial infections: Indian perspective. Indian Pediatr 47:157–164CrossRefGoogle Scholar
  54. Ravindran R, Mishra AK, Rao JR (2002) On the high seroprevalence of bovine babesiosis in Wayanad district of Kerala. J Appl Anim Res 22:43–48CrossRefGoogle Scholar
  55. René-Martellet M, Moro CV, Chêne J, Bourdoiseau G, Chabanne L, Mavingui P (2015) Update on epidemiology of canine babesiosis in Southern France. BMC Vet Res 11:223–233CrossRefGoogle Scholar
  56. Roux V, Raoult D (1995) Phylogenetic analysis of the genus Rickettsia by 16S rDNA sequencing. Res Microbiol 146:385–396CrossRefGoogle Scholar
  57. Roux V, Raoult D (1999) Body lice as tools for diagnosis and surveillance of reemerging diseases. J Clin Microbiol 37:596–599Google Scholar
  58. Ruiz-Fons F, Gilbert L (2010) The role of deer as vehicles to move ticks Ixodes ricinus between contrasting habitats. Int J Parasitol 40:1013–1020CrossRefGoogle Scholar
  59. Sahu A, Mohanty B, Panda MR, Sardar KK (2014) Incidence of haemoprotozoan parasites in dogs in and around Bhubaneswar, Odisha. Indian Vet J 91:93–95Google Scholar
  60. Shayan P, Hooshmand E, Rahbari S (2007) Determination of Rhipicephalus spp. as vectors for Babesia ovis in Iran. Parasitol Res 101:1029–1033CrossRefGoogle Scholar
  61. Shyma KP, Stanley B, Ray DD, Ghosh S (2013) Prevalence of cattle and buffalo ticks in northern Kerala. J Vet Parasitol 27(1):55–56Google Scholar
  62. Smitha JP, Thushara MR, Vijayakumar K, Saseedranath MR, Baby PG (2003) Concurrent infection of Ehrlichia sp. and Hepatozoon canis in a dog- a case report. Indian Vet J 80:1059–1060Google Scholar
  63. Soundararajan C, Nagarajan K, Prakash MA (2018) Tick infestation in human beings in the Nilgiris and Kancheepuram District of Tamil Nadu, India. J Parasit Dis 42:50–54CrossRefGoogle Scholar
  64. Stegeman JR, Birkenheuer AJ, Kruger JM, Breitschwerdt EB (2003) Transfusion-associated Babesia gibsoni infection in a dog. J Am Vet Med Assoc 222:959–963CrossRefGoogle Scholar
  65. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  66. Trapido H, Varma MGR, Rajagopalan PK, Singh KRP, Rebello MJ (1964) A guide to the identification of all stages of the Haemaphysalis ticks of South India. Bull Entomol Res 55:249–270CrossRefGoogle Scholar
  67. Voltzit OV, Keirans JE (2002) A review of Asian Amblyomma species (Acari: Ixodida). Acarina 10:95–136Google Scholar
  68. Yokoyama N, Ueno A, Mizuno D, Kuboki N, Khukhuu A, Igarashi I, Miyahara T, Shiraishi T, Kudo R, Oshiro M, Zakimi S, Sugimoto C, Matsumoto K, Inokuma H (2011) Genotypic diversity of Theileria orientalis detected from cattle grazing in Kumamoto and Okinawa prefectures of Japan. J Vet Med Sci 73:305–312CrossRefGoogle Scholar
  69. Yoshimoto K, Matsuyama Y, Matsuda H, Sakamoto L, Matsumoto K, Yokoyama N, Inokuma H (2010) Detection of Anaplasma bovis and A. phagocytophilum DNA from Haemaphysalis megaspinosa in Hokkaido, Japan. Vet Parasitol 168:170–172CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Murikoli Nimisha
    • 1
  • Jeena Kaitharath Devassy
    • 2
  • Rangapura Kariyappa Pradeep
    • 1
  • Vidya Pakideery
    • 1
  • Meethalae Koombayil Sruthi
    • 1
  • Anu Pious
    • 1
  • Prashant Somalingappa Kurbet
    • 1
  • Birur Mallappa Amrutha
    • 1
  • Leena Chandrasekhar
    • 3
  • Chundayil Kalarikkal Deepa
    • 1
  • Karapparambu Gopalan Ajithkumar
    • 1
  • Anju Varghese
    • 1
  • Sanis Juliet
    • 4
  • Chemmangattuvalappil Narendranath Dinesh
    • 5
  • Suresh Narayanan Nair
    • 4
  • George Chandy
    • 2
  • Srikant Ghosh
    • 6
  • Reghu Ravindran
    • 1
    Email author
  1. 1.Department of Veterinary ParasitologyCollege of Veterinary and Animal SciencesWayanadIndia
  2. 2.Center for Wildlife StudiesCollege of Veterinary and Animal SciencesWayanadIndia
  3. 3.Department of Veterinary AnatomyCollege of Veterinary and Animal SciencesWayanadIndia
  4. 4.Department of Veterinary Pharmacology and ToxicologyCollege of Veterinary and Animal SciencesWayanadIndia
  5. 5.Department of Animal Genetics and BreedingCollege of Veterinary and Animal SciencesWayanadIndia
  6. 6.Division of ParasitologyIndian Veterinary Research InstituteIzatnagarIndia

Personalised recommendations