Advertisement

Experimental and Applied Acarology

, Volume 77, Issue 3, pp 411–423 | Cite as

Molecular detection of Rickettsia spp., Anaplasma platys and Theileria equi in ticks collected from horses in Tayrona National Park, Colombia

  • Adriana SantodomingoEmail author
  • Keyla Sierra-Orozco
  • Andrea Cotes-Perdomo
  • Lyda R. Castro
Article

Abstract

Horses are among the domestic animals that closely interact with humans and are highly parasitized by ticks, which are the primary vectors of zoonoses. As horses in Tayrona National Natural Park (PNNT) are used as a means of transporting goods, luggage and people, they are in constant contact with wild animals, workers and tourists from different countries. These factors increase the transmission risk of hemoparasites. The purpose of this study was to determine the presence of Rickettsia sp., Anaplasma sp., and Theileria sp., in horse ticks in this protected area using conventional PCR. We collected 343 ticks of genera Amblyomma, Rhipicephalus and Dermacentor. Of the 61 samples analyzed by PCR, 18 (29.5%) individuals were positive for Rickettsia sp., 15 (24.5%) for Anaplasma sp. and 4 (6.6%) for Theileria sp. This is the first report of these hemoparasite genera in ticks associated with horses in this preserved natural area, demonstrating the importance of additional studies on the presence and epidemiology of hemoparasites and their vectors in domestic and wild animals in conserved areas with a high flow of tourists.

Keywords

Horses Natural parks Tourists Zoonosis 

Notes

Acknowledgements

We thank Gustavo López Valencia for assisting with the taxonomic identification of the ticks. We thank the PNNT and the owners of the horses for allowing us to carry out this research in their facilities. We also thank Santiago Nava for his suggestions on the phylogenetic tree of Amblyomma and for corroborating the identification of an Amblyomma mixtum specimen. This study was funded by the patrimonial fund for research (Fonciencias) of the Universidad del Magdalena [VIN2016104].

Compliance with ethical standards

Conflict of interest

The authors declare that there is no competing interest regarding the publication of this paper.

Ethics approval

Permission for manipulating the animals as well as collecting the ectoparasites for this study was given by ANLA (Autoridad Nacional de Licencias Ambientales) under permit no. 1293 and was approved by the Universidad del Magdalena Ethics Committee (Acta 001-15).

Informed consent

Informed verbal consent had been provided by the animal owners prior to the collection of samples.

References

  1. Alberdi P, Nijhof A, Jongejan F, Bell-Sakyi L (2012) Tick cell culture isolation and growth of Rickettsia raoultii from Dutch Dermacentor reticulatus ticks. Ticks Tick Borne Dis 3:349–354CrossRefGoogle Scholar
  2. Almazán C, González-Álvarez V, De Mera I, Cabezas-Cruz A, Rodríguez-Martínez R, De la Fuente J (2016) Molecular identification and characterization of Anaplasma platys and Ehrlichia canis in dogs in Mexico. Ticks Tick Borne Dis 7:276–283CrossRefGoogle Scholar
  3. Alves A, Melo A, Amorim M, Borges A, Silva L, Martins T, Pacheco R (2014) Seroprevalence of Rickettsia spp. in equids and molecular detection of Candidatus Rickettsia amblyommii in Amblyomma cajennense sensu lato, ticks from the Pantanal region of MatoGrosso, Brazil. J Med Entomol 51:1242–1247CrossRefGoogle Scholar
  4. Arraga-Alvarado C, Qurollo B, Parra O, Berrueta M, Hegarty B, Breitschwerdt E (2014) Molecular evidence of Anaplasma platys infection in two women from Venezuela. Am J Trop Med Hyg 91:1161–1165CrossRefGoogle Scholar
  5. Bashiruddin J, Cammà C, Rebêlo E (1999) Molecular detection of Babesia equi and Babesia caballi in horse blood by PCR amplification of part of the 16S rRNA gene. Vet Parasitol 84:75–83CrossRefGoogle Scholar
  6. Battsetseg B, Xuan X, Ikadai H, Bautista J, Byambaa B, Boldbaatar D, Nagasawa H (2001) Detection of Babesia caballi and Babesia equi in Dermacentor nuttalli adult ticks. Int J Parasitol 31:384–386CrossRefGoogle Scholar
  7. Battsetseg B, Lucero S, Xuan X, Claveria F, Inoue N, Alhassan A, Fujisaki K (2002) Detection of natural infection of Boophilus microplus with Babesia equi and Babesia caballi in Brazilian horses using nested polymerase chain reaction. Vet Parasitol 107:351–357CrossRefGoogle Scholar
  8. Beati L, Nava S, Burkman E, Barros-Battesti D, Labruna M, Guglielmone A, Cáceres A, Guzmán-Cornejo C, Léon R, Durden A, Faccini J (2013) Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae), the cayenne tick: phylogeography and evidence for allopatric speciation. BMC Evol Biol 13:267CrossRefGoogle Scholar
  9. Bermúdez S, Miranda R, Zaldívar-González P, Berguido G, Trejos D, Labruna M (2012) Detección de Rickettsia spp. en ectoparásitos de animales domésticos y silvestres de la Reserva Natural Privada Cerro Chucantí y comunidades aledañas a Panamá entre 2007–2010. Biomédica 32:189–195CrossRefGoogle Scholar
  10. Biggs H, Behravesh C, Bradley K et al (2016) Diagnosis and management of tickborne rickettsial diseases: rocky mountain spotted fever and other spotted fever group rickettsioses, ehrlichioses, and anaplasmosis. United States. MMWR Recomm Rep 65:1–44.  https://doi.org/10.15585/mmwr.rr6502a1 CrossRefGoogle Scholar
  11. Breitschwerdt E, Hegarty B, Qurollo B, Saito T, Maggi R, Blanton L, Bouyer D (2014) Intravascular persistence of Anaplasma platys, Ehrlichia chaffeensis, and Ehrlichia ewingii DNA in the blood of a dog and two family members. Parasit Vectors 7:7–298CrossRefGoogle Scholar
  12. Casati S, Sager H, Gern L, Piffaretti J (2006) Presence of potentially pathogenic Babesia sp. for human in Ixodes ricinus in Switzerland. Ann Agric Environ Med 13:65–70Google Scholar
  13. Cascio A, Torina A, Valenzise M, Blanda V, Camarda N, Bombaci S, Iaria C, De Luca F, Wasniewska M (2013) La escara del cuero cabelludo y la linfadenopatía del cuello causada por Rickettsia massiliae. Emerg Infectar Dis 19:836–837Google Scholar
  14. Cicuttin G, Vidal P, De Salvo N, Beltrán F, Dohmen F (2014) Detección molecular de Rickettsia massiliae y Anaplasma platys en garrapatas Rhipicephalus sanguineus y caninos domésticos del municipio de Bahía Blanca (Argentina). Rev Chilena Infectol 31:563–568.  https://doi.org/10.4067/S0716-10182014000500008 CrossRefGoogle Scholar
  15. Cotes-Perdomo A, Santodomingo A, Castro L (2018) Hemogregarine and Rickettsial infection in ticks of toads from northeastern Colombia. Int J Parasitol Parasites Wildl 7:237–242CrossRefGoogle Scholar
  16. Da Silva C, Santos H, Navarrete M, Ribeiro C, Gonzalez B, Zaldivar M, Massard C (2016) Molecular detection and characterization of Anaplasma platys in dogs and ticks in Cuba. Ticks Tick Borne Dis 7:938–944CrossRefGoogle Scholar
  17. De La Fuente J, Estrada-Peña A, Venzal J, Kocan K, Sonenshine D (2008) Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci 13:6938–6946CrossRefGoogle Scholar
  18. Donohoe H, Omodior O, Roe J (2018) Tick-borne disease occupational risks and behaviors of Florida Fish, Wildlife, and Parks service employees—a health belief model perspective. J Outdoor Recreat Tour 22:9–17CrossRefGoogle Scholar
  19. Eremeeva M, Bosserman E, Demma L, Zambrano M, Blau D, Dasch G (2006) Isolation and identification of Rickettsia massiliae from Rhipicephalus sanguineus ticks collected in Arizona. Appl Environ Microbiol 72:5569–5577.  https://doi.org/10.1128/AEM.00122-06 CrossRefGoogle Scholar
  20. Filatov D (2009) Processing and population genetic analysis of multigenic datasets with ProSeq3 software. Bioinformatics 25:3189–3190CrossRefGoogle Scholar
  21. Friedhoff K, Tenter A, Müller I (1990) Haemoparasites of equines: impact on international trade of horses. Rev sci tech 9:1187–1194CrossRefGoogle Scholar
  22. Garcia-Garcia J, Portillo A, Nuñez M, Santibáñez S, Castro B, Oteo J (2010) Case report: a patient from Argentina infected with Rickettsia massiliae. Am J Trop Med Hyg 82:691–692CrossRefGoogle Scholar
  23. Gaunt S, Beall M, Stillman B, Lorentzen L, Diniz P, Chandrashekar R, Breitschwerdt E (2010) Experimental infection and co-infection of dogs with Anaplasma platys and Ehrlichia canis: hematologic, serologic and molecular findings. Parasit Vectors 3:33–43CrossRefGoogle Scholar
  24. Ghane M, Wong L, Tay S, Bulgiba A, Zandi K, Kho K, Hassan Q et al (2016) Factors associated with tick bite preventive practices among farmworkers in Malaysia. PLoS One 11:e0157987.  https://doi.org/10.1371/journal.pone.0157987 CrossRefGoogle Scholar
  25. Guidi E, Pradier S, Lebert I, Leblond A (2015) Piroplasmosis in an endemic area: analysis of the risk factors and their implications in the control of Theileriosis and Babesiosis in horses. Parasitol Res 114:71.  https://doi.org/10.1007/s00436-014-4161-9 CrossRefGoogle Scholar
  26. Hidalgo M, Vesga J, Lizarazo D, Valbuena G (2009) A survey of antibodies against Rickettsia rickettsia and Erlichia chafeensis in domestic animals from a rural area or Colombia. Am J Trop Med Hyg 80:1029–1030CrossRefGoogle Scholar
  27. Hillis D, Bull J (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192CrossRefGoogle Scholar
  28. Hornok S, Fuente J, Horvath G, Fernandez de Mera I, Wijnveld M, Tanczos B, Farkas R, Jongejan F (2013) Molecular evidence of Ehrlichia canis and Rickettsia massiliae in ixodid ticks of carnivores from South Hungary. Acta Vet Hung 61:42–50CrossRefGoogle Scholar
  29. Huelsenbeck J, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefGoogle Scholar
  30. Jensenius M, Fournier P, Raoult D (2004) Tick-borne rickettsioses in international travelers. Int J Infect Dis 8:139–146CrossRefGoogle Scholar
  31. Jensenius M, Parola P, Raoult D (2006) Threats to international travellers posed by tick-borne diseases. Travel Med Infect Dis 4:4–13CrossRefGoogle Scholar
  32. Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitol 129(S1):S3–S14CrossRefGoogle Scholar
  33. Kerber C, Labruna M, Ferreira F, De Waal D, Knowles D, Gennari S (2009) Prevalence of equine Piroplasmosis and its association with tick infestation in the State of São Paulo, Brazil. Rev Bras Parasitol Vet 18:1–8CrossRefGoogle Scholar
  34. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  35. Labruna M, Kerber C, Ferreira F, Faccini J, De Waal D, Gennari S (2001) Risk factors to tick infestations and their occurrence on horses in the state of São Paulo, Brazil. Vet Parasitol 97:1–14CrossRefGoogle Scholar
  36. Labruna M, Whitworth T, Bouyer D, McBride J, Camargo L, Camargo E, Popov V, Walker D (2004) Rickettsia bellii and Rickettsia amblyommii in Amblyomma. Ticks from the State of Rondônia, Western Amazon, Brazil. J Med Entomol 41:1073–1081CrossRefGoogle Scholar
  37. Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701CrossRefGoogle Scholar
  38. Luz H, Faccini J, McIntosh D (2017) Molecular analyses reveal an abundant diversity of ticks and rickettsial agents associated with wild birds in two regions of primary Brazilian Atlantic Rainforest. Ticks Tick Borne Dis 8:657–665CrossRefGoogle Scholar
  39. Magnarelli L (2009) Global importance of ticks and associated infectious disease agents. Clin Microbiol Newsl 31:33–37CrossRefGoogle Scholar
  40. Martins T, Onofrio V, Barros-Battesti D, Labruna M (2010) Nymphs of the genus Amblyomma (Acari: Ixodidae) of Brazil: descriptions, redescriptions, and identification key. Ticks Tick Borne Dis 1:75–99CrossRefGoogle Scholar
  41. Matsumoto K, Ogawa M, Brouqui P, Raoult D, Parola P (2005) Transmission of Rickettsia massiliae in the tick Rhipicephalus turanicus. Med Vet Entomol 19:263–270CrossRefGoogle Scholar
  42. McLain D, Wesson D, Oliver J, Collins F (1995) Variation in ribosomal DNA internal transcribed spaces 1 among eastern populations of Ixodes scapularis (Acari: Ixodidae). J Med Entomol 32:353–360CrossRefGoogle Scholar
  43. Morand A, Angelakis E, Chaabane M, Parola P, Raoult D, Gautret P (2018) Seek and Find! PCR analyses of skin infections in West-European travelers returning from abroad with an eschar. Travel Med Infect Dis 26:32–36.  https://doi.org/10.1016/j.tmaid.2018.02.009 CrossRefGoogle Scholar
  44. Murray GGR, Weinert L, Rhule EL, Welch JJ (2016) The phylogeny of Rickettsia using different evolutionary signatures: how tree-like is bacterial evolution? Syst Biol 65:265–279.  https://doi.org/10.1093/sysbio/syv084 CrossRefGoogle Scholar
  45. Nava S, Beati L, Labruna MB, Cáceres AG, Mangold AJ, Guglielmone AA (2014) Reassessment of the taxonomic status of Amblyomma cajennense (Fabricius, 1787) with the description of three new species, Amblyomma tonelliae n. sp., Amblyomma interandinum n. sp. and Amblyomma patinoi n. sp., and reinstatement of Amblyomma mixtum Koch, 1844, and Amblyomma sculptum Berlese, (Ixodida: Ixodidae). Ticks Tick Borne Dis 5:252–276CrossRefGoogle Scholar
  46. Oliveira PR, Borges LM, Leite RC, Freitas CM (2003) Seasonal dynamics of the Cayenne tick, Amblyomma cajennense on horses in Brazil. Med Vet Entomo l17:412–416CrossRefGoogle Scholar
  47. Oliveira JB, Montoya J, Romero JJ, Urbina A, Soto-Barrientos N, Melo ESP, Ramos CAN, Araújo FR (2010) Epidemiology of bovine anaplasmosis in dairy herds from Costa Rica. Vet Parasitol 177:359–365CrossRefGoogle Scholar
  48. Osorio M, Miranda J, González M, Mattar S (2018) Anaplasma sp., Erlichia sp., and Rickettsia sp. in ticks: a high risk for public health in Ibagué, Colombia. Kafkas Univ Vet Fak Derg 24:557–562.  https://doi.org/10.9775/kvfd.2018.19581
  49. Osorno-Mesa E (2006) Las Garrapatas de la República de Colombia. Biomédica 4:6–24.  https://doi.org/10.7705/biomedica.v26i3.351 Google Scholar
  50. Parola P, Socolovschi C, Jeanjean L, Bitam I, Fournier PE, Sotto A et al (2008) Warmer weather linked to tick attack and emergence of severe rickettsioses. PLoS Negl Trop Dis 2:e338.  https://doi.org/10.1371/journal.pntd.0000338 CrossRefGoogle Scholar
  51. Posada-Guzmán MF, Dolz G, Romero-Zúñiga JJ, Jiménez-Rocha AE (2015) Detection of Babesia caballi and Theileria equi in blood from equines from four indigenous communities in Costa Rica. Vet Med Int 2015:1–6CrossRefGoogle Scholar
  52. Quintero J, Paternina L, Uribe A, Muskus C, Hidalgo M, Gil J, Cienfuegos G, Osorio L, Rojas C (2017) Eco-epidemiological analysis of rickettsial seropositivity in rural areas of Colombia: a multilevel approach. PLoS Neglect Trop d 11:1–19CrossRefGoogle Scholar
  53. Ramírez A (2014) Identificación molecular y análisis de la relación filogenética de especies de Rickettsias presentes en garrapatas provenientes de tres regiones de Colombia. Dissertation, Universidad Nacional de ColombiaGoogle Scholar
  54. Rar VA, Fomenko NV, Dobrotvorsky AK, Livanova NN, Rudakova SA, Fedorov EG et al (2005) Tickborne Pathogen Detection, Western Siberia, Russia. Emerg Infect Dis 11:1708–1715CrossRefGoogle Scholar
  55. Rivera-Páez FA, Labruna MB, Martins TF, Sampieri B, Camargo-Mathias MI (2016) Amblyomma mixtum Koch, 1844 (Acari: Ixodidae): First record confirmation in Colombia using morphological and molecular analyses. Tick Borne Dis 7:842–848CrossRefGoogle Scholar
  56. Rodríguez I, Gern L, Rais O, Fuentes O, González R, Fernández C (2009) Detección molecular de patógenos emergentes de importancia médica y veterinaria en garrapatas capturadas sobre caballos domésticos. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602009000100008&lng=es&nrm=iso. Accessed 10 Jun 2017
  57. Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefGoogle Scholar
  58. Santodomingo A, Cotes-Perdomo A, Foley J, Castro LR (2018) Rickettsial infection in ticks (Acari: Ixodidae) from reptiles in the Colombian Caribbean. Ticks Tick borne Dis 9:623–628CrossRefGoogle Scholar
  59. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRefGoogle Scholar
  60. SPNN (2017) Informe anual 2017. Comportamiento de visitantes en áreas protegidas (AP) con vocación ecoturística 2017. Subdirección de sostenibilidad y negocios ambientales. https://storage.googleapis.com/pnn-web/uploads/2013/11/INFORME-VISITANTES-2017.-FINAL.pdf. Accessed 11 June 2018
  61. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefGoogle Scholar
  62. Teglas M, Matern E, Lein S, Foley P, Mahan SM, Foley J (2005) Ticks and tick-borne disease in Guatemalan cattle and horses. Vet Parasitol 131:119–127CrossRefGoogle Scholar
  63. Ueti M, Palmer G, Scoles G, Kappmayer L, Knowles D (2008) Persistently infected horses are reservoirs for intrastadial tick-borne transmission of the apicomplexan parasite Babesia equi. Infect Immun 76:3525–3529CrossRefGoogle Scholar
  64. Uilenberg G (2006) Babesia-A historical overview. Vet Parasitol 138:3–10CrossRefGoogle Scholar
  65. Vargas-Hernandez G, André M, Cendales D, Sousa K, Gonçalves L, Rondelli M, Tinucci-Costa M (2016) Molecular detection of Anaplasma species in dogs in Colombia. Rev Bras Parasitol Vet 25:459–464CrossRefGoogle Scholar
  66. Vieira T, Vieira R, Finger M, Nascimento D, Sicupira P, Dutra L, Vidotto O (2013) Seroepidemiological survey of Theileria equi and Babesia caballi in horses from a rural and from urban areas of Paraná State, Southern Brazil. Ticks Tick Borne Dis 4:537–541CrossRefGoogle Scholar
  67. Vitale G, Mansuelo S, Rolain JM, Raoult D (2006) Rickettsia massiliae human isolation. Emerg Infect Dis 12:174–175.  https://doi.org/10.3201/eid1201.050850 CrossRefGoogle Scholar
  68. Voltzit O (2007) A review of neotropical Amblyomma species (Acari: Ixodidae). Acarina 15:3–134 https://acarina.utmn.ru/upload/iblock/b7d/15_1_Voltzit.pdf Google Scholar
  69. Waal DT (1992) Equine piroplasmosis: a review. Br Vet J 148:6–14CrossRefGoogle Scholar
  70. Walker DH, Paddock CD, Dumler JS (2008) Emerging and re-emerging tick-transmited rickettsial and erlichial infections. Med Clin North Am 92:1345–1361CrossRefGoogle Scholar
  71. Wikswo ME, Hu R, Dasch GA, Krueger L, Arugay A, Jones K, Hess B, Bennett S, Kramer V, Eremeeva ME (2008) Detection and identification of spotted fever group Rickettsiae in Dermacentor species from Southern California. J Med Entomol 45:509–516CrossRefGoogle Scholar
  72. Wise LN, Kappmeyer LS, Mealey RII, Knowles DP (2013) Review of Equine Piroplasmosis. J Vet Intern Med 27:1334–1346CrossRefGoogle Scholar
  73. Zaharia M, Popescu CP, Florescu SA, Ceausu E, Raoult D, Parola P, Socolovschi C (2016) Rickettsia massiliae infection and SENLAT syndrome in Romania. Ticks Tick-Borne Dis 7:759–762CrossRefGoogle Scholar
  74. Zahler M, Gothe R, Rinder H (1995) Genetic evidence against a morphologically suggestive conspeciÞcity of Dermacentor reticulatus and D. marginatus. Int J Parasitol 25:1413–1419CrossRefGoogle Scholar
  75. Zeringóta V, Maturano R, Luz H, Senra T, Daemon E, Faccini J, McIntosh D (2017) Molecular detection of Rickettsia rhipicephali and other spotted fever group Rickettsia species in Amblyomma ticks infesting wild birds in the state of Minas Gerais, Brazil. Ticks Tick-Borne Dis 8:81–89CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Grupo de Investigación Evolución, Sistemática y Ecología Molecular (GIESEMOL)Universidad del MagdalenaSanta MartaColombia

Personalised recommendations