Experimental and Applied Acarology

, Volume 77, Issue 1, pp 11–25 | Cite as

Spermatophore producing process and sperm transfer in Phytoseiulus persimilis

  • Xiaohuan Jiang
  • Jiale Lv
  • Endong Wang
  • Xuenong XuEmail author


In phytoseiid mites, the spermatophore is an intermediate, isolated structure where sperms are stored during mating. In the present study, the producing process of Phytoseiulus persimilis spermatophore is described in details. Its shape, and the number and shape of sperms inside, are also analyzed, each as affected by coupling time. Based on our results, the spermatophore of P. persimilis is pyriform, and is produced from the male genital opening within 3 min since mating started. When produced, the spermatophore is transferred along the capitular groove to the cheliceral base, where it is adhered to one of the two small holes at the bases of the chelicerae. Seminal fluid passes through the hole, the hollow spermatodactyl, the opening on the spermatodactyl tip, and enters the insemination pore to reach the spermatheca of the female. No sperm was observed in spermatophores obtained 5 min after mating started. The number of sperms increased in the next 10 min, reached its maximum (ca. 52 sperms per spermatophore), and then decreased. All sperms were released in 75 min after mating started. Sperms are slender in shape and on average 3.9 ± 0.3 µm long.


Phytoseiidae Ultrastructure Mating Reproduction Seminal fluid 



This study was supported by the National Key R&D Program of China (2017YFD0200400), the National Natural Science Foundation of China (31701850, 31872028) and co-innovation project of CAAS and SDAAS ‘Key technologies on regional green agricultural development and integrated demonstration’. We sincerely appreciate the Institute of Food Science and Technology, CAAS, for allowing us to use their electron microscopes.


  1. Abou-Elella GM, Abou-Elela MM (2002) Some factors affecting reproduction and sex ratio in Neoseiulus cucumeris (Oudemans) (Acari, Phytoseiidae). J Egypt German Soc Zool 39:57–66Google Scholar
  2. Alberti G, Coons LB (1999) Acari—mites. In: Harrison FW, Foelix RF (eds) Chelicerate Arthropoda. Wiley, New York, pp 515–1265Google Scholar
  3. Alberti G, Di Palma A (2002) Fine structure of the phytoseiid-type sperm access system (Acari, Gamasida, Phytoseiidae). In: Acarid phylogeny and evolution: adaptation in mites and ticks: proceedings of the IV symposium of the European Association of Acarologists, pp 241–252.
  4. Alberti G, Di Palma A (2007) Fine structure of male reproductive systems in Phytoseiulus persimilis (Phytoseiidae, Gamasida, Acari). In: Acarology XI: proceedings of the international congress. Instituto de Biologia and Facultad de Ciencias, Universidad Nacional Autónoma de México Sociedad Latinoamericana de Acarologia, México, pp 561–569Google Scholar
  5. Amano H, Chant DA (1978a) Some factors affecting reproduction and sex ratios in two species of predacious mites, Phytoseiulus persimilis Athias-Henriot and Amblyseius andersoni (Chant) (Acarina: Phytoseiidae). Can J Zool 56:1593–1607. CrossRefGoogle Scholar
  6. Amano H, Chant DA (1978b) Mating behavior and reproductive mechanisms of two species of predacious mites, Phytoseiulus persimilis Athias-Henriot and Amblyseius andersoni (Chant) (Acarina: Phytoseiidae). Acarologia 20:196–213Google Scholar
  7. Avila FW, Wolfner MF (2009) Acp36DE is required for uterine conformational changes in mated Drosophila females. Proc Natl Acad Sci 106:15796–15800. CrossRefGoogle Scholar
  8. Avila FW, Ram KR, Qazi MCB, Wolfner MF (2010) Sex peptide is required for the efficient release of stored sperm in mated Drosophila females. Genetics 186:595–600. CrossRefGoogle Scholar
  9. Cock MJW, van Lenteren JC, Brodeur J, Barratt BIP, Bigler F, Bolckmans K, Coˆnsoli FL, Haas F, Mason PG, Parra JRP (2010) Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control? BioControl 55:199–218. CrossRefGoogle Scholar
  10. DeBach P, Rosen D (1991) Biological control by natural enemies, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  11. Di Palma A, Alberti G (2001) Fine structure of the female genital system in phytoseiid mites with remarks on egg nutrimentary development, sperm-access system, sperm transfer, and capacitation (Acari, Gamasida, Phytoseiidae). Exp Appl Acarol 25:525–591. CrossRefGoogle Scholar
  12. Di Palma A, Alberti G, Wegener A (2009) On the ultrastructure and functional morphology of the male chelicerae (gonopods) in Parasitina and Dermanyssina mites (Acari: Gamasida). Arthropod Struct Dev 38:329–338. CrossRefGoogle Scholar
  13. Dosse G (1967) Schadmilben des libanons und ihre prädatoren. Z Angew Entomol 59:16–18. CrossRefGoogle Scholar
  14. Easterbrook MA, Fitzgerald JD, Solomon MG (2001) Biological control of strawberry tarsonemid mite Phytonemus pallidus and two-spotted spider mite Tetranychus urticae on strawberry in the UK using species of Neoseiulus (Amblyseius) (Acari: Phytoseiidae). Exp Appl Acarol 25:25–36. CrossRefGoogle Scholar
  15. Gotoh T, Tsuchiya A (2008) Effect of multiple mating on reproduction and longevity of the phytoseiid mite Neoseiulus californicus. Exp Appl Acarol 44:185–197. CrossRefGoogle Scholar
  16. Hoy MA (2009) The predatory mite Metaseiulus occidentalis: mitey small and mitey large genomes. BioEssays 31:581–590. CrossRefGoogle Scholar
  17. Hoy MA, Yu F, Meyer JM, Tarazona OA, Jeyaprakash A, Wu K (2013) Transcriptome sequencing and annotation of the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae): a cautionary tale about possible contamination by prey sequences. Exp Appl Acarol 59:283–296. CrossRefGoogle Scholar
  18. Hoy MA, Waterhouse RM, Wu K, Estep AS, Ioannidis P, Palmer WJ et al., (2016) Genome sequencing of the phytoseiid predatory mite Metaseiulus occidentalis reveals completely atomized Hox genes and superdynamic intron evolution. Genome Biol Evol 8:1762–1775. CrossRefGoogle Scholar
  19. Jeyaprakash A, Hoy MA (2009) The nuclear genome of the phytoseiid Metaseiulus occidentalis (Acari: Phytoseiidae) is among the smallest known in arthropods. Exp Appl Acarol 47:263–273. CrossRefGoogle Scholar
  20. Krantz GW, Wernz JG (1979) Sperm transfer in Glyptholaspis americana. In: Rodriguez JG (ed) Recent advances in acarology, vol 2. Academic Press, New York, pp 441-446.$450062-8 Google Scholar
  21. Lv J, Zhang B, Jiang X, Wang E, Xu X (2018) Quantitative impact of mating duration on reproduction and offspring sex ratio of Phytoseiulus persimilis (Acari: Phytoseiidae). J Integr Agric 17:60345–60347. Google Scholar
  22. McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321. CrossRefGoogle Scholar
  23. McMurtry JA, Scriven GT (1964) Biology of the predaceous mite Typhlodromus rickeri (Acarina: Phytoseiidae). Ann Entomol Soc Am 57:362–367. CrossRefGoogle Scholar
  24. Momen FM (1993) Effect of single and multiple copulation on fecundity, longevity and sex-ratio of the predacious mite, Amblyseius barkeri (Hugh.) (Acari. Phytoseiidae). J Pest Sci 66:148–150Google Scholar
  25. Momen FM (1997) Copulation, egg production and sex ratio in Cydnodromella negevi and Typhlodromus athiasae (Acari: Phytoseiidae). J Pest Sci 70:34–36. Google Scholar
  26. Nagelkerke CJ, Sabelis MW (1998) Precise control of sex allocation in pseudo-arrhenotokous phytoseiid mites. J Evol Biol 11:649–684. CrossRefGoogle Scholar
  27. Nguyen TTP, Amano H (2010) Temperature at immature and adult stages differentially affects mating duration and egg production of Neoseiulus californicus females mated once (Acari: Phytoseiidae). J Asia Pac Entomol 13:65–68. CrossRefGoogle Scholar
  28. Nomikou M, Janssen A, Schraag R, Sabelis MW (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp Appl Acarol 25:271–291. CrossRefGoogle Scholar
  29. Overmeer WPJ, Doodeman M, van Zon AQ (1982) Copulation and egg production in Amblyseius potentillae and Typhlodromus pyri (Acari, Phytoseiidae). J Appl Entomol 63:1–11. Google Scholar
  30. Ozawa R, Nishimura O, Yazawa S, Muroi A, Takabayashi J, Arimura G (2012) Temperature-dependent, behavioural, and transcriptional variability of a tritrophic interaction consisting of bean, herbivorous mite, and predator. Mol Ecol 21:5624–5635. CrossRefGoogle Scholar
  31. Pomerantz AF, Hoy MA (2015) RNAi-mediated knockdown of transformer-2 in the predatory mite Metaseiulus occidentalis via oral delivery of double-stranded RNA. Expl Appl Acarol 65:17–27 CrossRefGoogle Scholar
  32. Pomerantz AF, Hoy MA, Kawahara AY (2015) Molecular characterization and evolutionary insights into potential sex-determination genes in the western orchard predatory mite Metaseiulus occidentalis (Chelicerata: Arachnida: Acari: Phytoseiidae). J Biomol Struct Dyn 33:1239–1253. CrossRefGoogle Scholar
  33. Rasmy H, Hussein HE (1996) Effect of mating on egg production in two species of predatory mites, Agistemus exsertus Gonzalez and Phytoseiulus persimilis Athias—Henriot. Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz 69:88–89. CrossRefGoogle Scholar
  34. Saber SA, Momen FM (2000) Effects of mating factors on reproduction and sex ratio of the predacious mite Amblyseius zaheri Yous and El-Bor (Acari: Phytoseiidae). J Pest Sci 73:113–115. Google Scholar
  35. Schausberger P, Patino-Ruiz JD, Osakabe M, Murata Y, Sugimoto N, Uesugi R, Walzer A (2016) Ultimate drivers and proximate correlates of polyandry in predatory mites. PLoS One 11:e0154355. CrossRefGoogle Scholar
  36. Schulten GGM, van Arendonk RCM, Russell VM, Roorda FA (1978) Copulation, egg production and sex ratio in Phytoseiulus persimilis and Amblyseius bibens (Acari: Phytoseiidae). Entomol Exp Appl 24:145–153. CrossRefGoogle Scholar
  37. Sirot LK, Buehner NA, Fiumera AC, Wolfner MF (2009) Seminal fluid protein depletion and replenishment in the fruit fly, Drosophila melanogaster: an ELISA-based method for tracking individual ejaculates. Behav Ecol Sociobiol 63:1505–1513. CrossRefGoogle Scholar
  38. South A, Sirot LK, Lewis SM (2011) Identification of predicted seminal fluid proteins in Tribolium castaneum, Insect Mol Biol 20:447–456. CrossRefGoogle Scholar
  39. Toyoshima S, Nakamura M, Nagahama Y, Amano H (2000) Process of egg formation in the female body cavity and fertilization in male eggs of Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 24:441–451. CrossRefGoogle Scholar
  40. van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biocontrol 57:1–20. CrossRefGoogle Scholar
  41. van Houten YM, van Rijn PCJ, Tanigoshi LK, van Stratum P, Bruin J (1995) Preselection of predatory mites to improve year-round biological control of Western flower thrips in greenhouse crops. Entomol Exp Appl 74:225–234. CrossRefGoogle Scholar
  42. Walzer A, Schausberger P (2015) Food stress causes sex-specific maternal effects in mites. J Exp Biol 218:2603–2609. CrossRefGoogle Scholar
  43. Wu K, Hoy MA (2014) Oral delivery of double-stranded RNA induces prolonged and systemic gene knockdown in Metaseiulus occidentalis only after feeding on Tetranychus urticae. Exp Appl Acarol 63:171–187. CrossRefGoogle Scholar
  44. Wu K, Hoy MA (2015) Cloning and functional characterization of two BTB genes in the predatory mite Metaseiulus occidentalis. PLoS One 10:e0144291. CrossRefGoogle Scholar
  45. Zaher F, Momen M, Rasmy AH, Nawar MS, Abou-Elella G (2007) Some factors affecting reproduction and sex-ratio of the predacious mite Amblyseius deleoni (Muma and Denmark) (Acari: Phytoseiidae). Arch Phytopathol Plant Prot 40:264–280. CrossRefGoogle Scholar
  46. Zhang X, Lv J, Hu Y, Wang B, Chen X, Xu X, Wang E (2015) Prey preference and life table of Amblyseius orientalis on Bemisia tabaci and Tetranychus cinnabarinus. PLoS One 10:e0138820. CrossRefGoogle Scholar
  47. Zhuge H, Meng Y, Chen M, Zhou H (1997) Studies on the chromosomes of Ornithonyssus bacoti by air-drying technique. Chin J Vector Biol Control 8:21–23Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Xiaohuan Jiang
    • 1
  • Jiale Lv
    • 1
  • Endong Wang
    • 1
  • Xuenong Xu
    • 1
    Email author
  1. 1.Lab of Predatory Mites, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations