Advertisement

Experimental and Applied Acarology

, Volume 76, Issue 2, pp 243–248 | Cite as

In search of the vector(s) of Babesia rossi in Nigeria: molecular detection of B. rossi DNA in Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) ticks collected from dogs, circumstantial evidence worth exploring

  • Joshua Kamani
  • Ping-Jun Chung
  • Chung-Chan Lee
  • Yang-Tsung Chung
Article
  • 9 Downloads

Abstract

The brown dog tick Rhipicephalus sanguineus (sensu lato) (Acari: Ixodidae) has a cosmopolitan distribution, is a proven vector of a host of pathogens with emerging evidence incriminating it in the transmission of some others. Specifically it is reputed as the main vector of Babesia vogeli whereas the southern African yellow dog tick Haemaphysalis elliptica, long considered to be H. leachi, is apparently the only proven vector of B. rossi, since the resurrection of the separate species H. elliptica as a member of the leachi-group by Apanaskevich et al. However, recent epidemiological surveys conducted in Nigeria show higher prevalence of B. rossi than B. vogeli infection in dogs most of whom were infested with R. sanguineus and rarely with ticks of the H. leachi group. The discrepancy between tick distribution and Babesia spp. prevalent in dogs stimulated us to investigate the possible role of R. sanguineus (s.l.) in the natural transmission of B. rossi. Out of a total of 66 tick samples identified morphologically and molecularly as R. sanguineus collected from dogs manifesting clinical signs of tick-borne diseases, eight (12%) were positive in nested PCR for Babesia sp. DNA. Sequencing results for these amplified products showed that all of the 18S rDNA sequences (693 bp) were identical to each other, and bore 99.3–99.9% identities with those from other B. rossi isolates accessible in GenBank. None of the ticks harbored the DNA of B. vogeli or B. canis. The possible implications for the detection of B. rossi DNA in R. sanguineus (s.l.) ticks collected from dogs in the epidemiology of B. rossi infection of dogs in Nigeria is highlighted.

Keywords

Babesia rossi Vector Rhipicephalus sanguineus (s.l.) Haemaphysalis elliptica Dog Nigeria PCR 

Notes

Acknowledgements

We are grateful to the staff, Parasitology Division, National Veterinary Research Institute, Vom for technical support. This work was financially supported in part by the Taiwanese government through the research grant to National Chung Hsing University (NCHU-CC98116).

References

  1. Adamu NB, Adamu JY, Salisu L (2012) Prevalence of ecto-, endo- and haemoparasites in slaughtered dogsin Maiduguri, Nigeria. Rev Méd Vét 163:178–182Google Scholar
  2. Adamu M, Troskie M, Oshadu DO, Malatji DP, Penzhorn BL, Matjila PT (2014) Occurrence of tick-transmitted pathogens in dogs in Jos, Plateau State, Nigeria. Parasite Vectors 7:119CrossRefGoogle Scholar
  3. Allison RW, Yeagley TJ, Levis K, Reichard MV (2011) Babesia canis rossi infection in a Texas dog. Vet Clin Pathol 40:345–350CrossRefGoogle Scholar
  4. Allsopp MT, Allsopp BA (2006) Molecular sequence evidence for the reclassification of some Babesia species. Ann N Y Acad Sci 1081:509–517CrossRefGoogle Scholar
  5. Apanaskevich DA, Horak IG, Camicas JL (2007) Redescription of Haemaphysalis (Rhipistoma) elliptica (Koch, 1844), an old taxon of the Haemaphysalis (Rhipistoma) leachi group from East and southern Africa, and of Haemaphysalis (Rhipistoma) leachi (Audouin, 1826) (Ixodida, Ixodidae). Onderstepoort J Vet Res 74:181–208CrossRefGoogle Scholar
  6. Aquino LC, Kamani J, Haruna AM, Paludo GR, Hicks CA, Helps CR, Tasker S (2016) Analysis of risk factors and prevalence of haemoplasma infection in dogs. Vet Parasitol 221:111–117CrossRefGoogle Scholar
  7. Black WC 4th, Piesman J (1994) Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci USA 91:10034–10038CrossRefGoogle Scholar
  8. Black WC 4th, Roehrdanz RL (1998) Mitochondrial gene order is not conserved in arthropods: prostriate and metastriate tick mitochondrial genomes. Mol Biol Evol 15:1772–1785CrossRefGoogle Scholar
  9. Boozer AL, Macintire DK (2003) Canine babesiosis. Vet Clin North Am Small Anim Pract 33:885–904CrossRefGoogle Scholar
  10. Carret C, Walas F, Carcy B, Grande N, Précigout E, Moubri K, Schetters TP, Gorenflot A (1999) Babesia canis canis, Babesia canis vogeli, Babesia canis rossi: differentiation of the three subspecies by a restriction fragment length polymorphism analysis on amplified small subunit ribosomal RNA genes. J Eukaryot Microbiol 46:298–303CrossRefGoogle Scholar
  11. Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L (2009) Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res 40:37CrossRefGoogle Scholar
  12. Chomel B (2011) Tick-borne infections in dogs: an emerging infectious threat. Vet Parasitol 179:294–301CrossRefGoogle Scholar
  13. Dantas-Torres F (2008) The brown dog tick, Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae): from taxonomy to control. Vet Parasitol 152:173–185CrossRefGoogle Scholar
  14. Fritz D (2010) A PCR study of piroplasms in 166 dogs and 111 horses in France (March 2006 to March 2008). Parasitol Res 106:1339–1342CrossRefGoogle Scholar
  15. Irwin PJ (2009) Canine babesiosis: from molecular taxonomy to control. Parasite Vectors 2(Suppl. 1):S4CrossRefGoogle Scholar
  16. Jacobson LS (2006) The South African form of severe and complicated canine babesiosis: clinical advances 1994–2004. Vet Parasitol 138:126–139CrossRefGoogle Scholar
  17. Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129:S3–S14CrossRefGoogle Scholar
  18. Jongejan F, Su B-L, Yang H-J, Berger L, Bevers J, Liu P-C, Fang J-C, Cheng Y-W, Kraakman C, Plaxton N (2018) Molecular evidence for the transovarial passage of Babesia gibsoni in Haemaphysalis hystricis (Acari: Ixodidae) ticks from Taiwan: a novel vector for canine babesiosis. Parasite Vectors 11:134.  https://doi.org/10.1186/s13071-018-2722-y CrossRefGoogle Scholar
  19. Kamani J, Sannusi A, Dogo GI, Tanko TJ, Egwu OK, Agbadu ET, Ogo NI, Sarah K, Onovoh E, Shamaki D, Lombin LH, Catto V, Birkenheuer AJ (2010) Babesia canis and Babesia rossi co-infection in an untraveled Nigerian dog. Vet Parasitol 173:334–335CrossRefGoogle Scholar
  20. Kamani J, Baneth G, Mumcuoglu KY, Waziri NE, Eyal O, Guthmann Y, Harrus S (2013) Molecular detection and characterization of tick-borne pathogens in dogs and ticks from Nigeria. PLoS Negl Trop Dis 7:e2108.  https://doi.org/10.1371/journal.pntd.0002108 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Matijatko V, Torti M, Schetters TP (2012) Canine babesiosis in Europe: how many diseases? Trends Parasitol 28:99–105CrossRefGoogle Scholar
  22. Nava S, Mastropaolo M, Venzal JM, Mangold AJ, Guglielmone AA (2012) Mitochondrial DNA analysis of Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) in the Southern Cone of South America. Vet Parasitol 190:547–555CrossRefGoogle Scholar
  23. Okoli IC, Okoli CG, Opara M (2006) Environmental and multi-host Infestation of the brown dog tick, Rhipicephalus sanguineus in Owerri, South-East Nigeria. Vet Arh 76(1):93–100Google Scholar
  24. Opara MN, Adewumi TS, Mohammed BR, Obeta SS, Simon MK, Jegede OC, Agbede RIS (2017) Investigations on the haemoprotozoan parasites of Nigerian local breed of dogs in Gwagwalada Federal Capital Territory (FCT) Nigeria. Res J Parasitol 12:1–7CrossRefGoogle Scholar
  25. Palmas C, Bortoletti G, Conchedda M, Contini C, Gabriele F, Ecca AR (2001) Study on immunobiology in ectoparasites of public health interest: Rhipicephalus sanguineus. Parassitologia 43(Suppl. 1):29–35PubMedGoogle Scholar
  26. Penzhorn BL (2011) Why is Southern African canine babesiosis so virulent? An evolutionary perspective. Parasite Vectors 5:51–56CrossRefGoogle Scholar
  27. Sasaki M, Omobowale O, Tozuka M, Ohta K, Matsuu A, Nottidge HO, Hirata H, Ikadai H, Oyamada T (2007) Molecular survey of Babesia canis in dogs in Nigeria. J Vet Med Sci 69:1191–1193CrossRefGoogle Scholar
  28. Schetters TP, Moubri K, Précigout E, Kleuskens J, Scholtes NC, Gorenflot A (1997) Different Babesia canis isolates, different diseases. Parasitology 115:485–493CrossRefGoogle Scholar
  29. Schetters TP, Moubri K, Cooke BM (2009) Comparison of Babesia rossi and Babesia canis isolates with emphasis on effects of vaccination with soluble parasite antigens: a review. J S Afr Vet Assoc 80:75–78CrossRefGoogle Scholar
  30. Schoeman JP (2009) Canine babesiosis. Onderstepoort J Vet Res 76:59–66CrossRefGoogle Scholar
  31. Solano-Gallego L, Baneth G (2011) Babesiosis in dogs and cats: expanding parasitological and clinical spectra. Vet Parasitol 181:48–60CrossRefGoogle Scholar
  32. Uilenberg G (2006) Babesia: a historical overview. Vet Parasitol 138:3–10CrossRefGoogle Scholar
  33. Uilenberg G, Franssen FF, Perié NM, Spanjer AA (1989) Three groups of Babesia canis distinguished and a proposal for nomenclature. Vet Q 11:33–40CrossRefGoogle Scholar
  34. Walker AR, Bouattour A, Camicas JL, Estrada-Peña A, Horak IG, Latif AA, Pegram RG, Preston PM (2003) Ticks of domestic animals in Africa: a guide to identification of species. Bioscience Reports, EdinburghGoogle Scholar
  35. Zahler M, Schein E, Rinder H, Gothe R (1998) Characteristic genotypes discriminate between Babesia canis isolates of differing vector specificity and pathogenicity to dogs. Parasitol Res 84:544–548CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Joshua Kamani
    • 1
  • Ping-Jun Chung
    • 2
  • Chung-Chan Lee
    • 2
  • Yang-Tsung Chung
    • 2
  1. 1.Parasitology DivisionNational Veterinary Research InstituteVomNigeria
  2. 2.Department of Veterinary Medicine, College of Veterinary MedicineNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations