Advertisement

Experimental and Applied Acarology

, Volume 76, Issue 2, pp 161–183 | Cite as

Mulching with coffee husk and pulp in strawberry affects edaphic predatory mite and spider mite densities

  • Fernanda de Cássia Neves Esteca
  • Luis Rodolfo Rodrigues
  • Gilberto José de Moraes
  • Italo Delalibera Júnior
  • Ingeborg Klingen
Article

Abstract

Mulching of soil beds of strawberry fields is usually done with polyethylene film in southern Minas Gerais state, Brazil. This material is relatively expensive and difficult to discard after use. In some countries, mulching is done with the use of organic material that could have an advantage over the use of plastic for its easier degradation after use, and for favoring edaphic beneficial organisms. Predatory mites (especially Gamasina, Mesostigmata) may be abundant in the soil and could conceivably move to the soil surface and onto the short-growing strawberry plants at night, helping in the control or pest arthropods. The two-spotted spider mite, Tetranychus urticae Koch, is considered an important strawberry pest in that region, where the fungus Neozygites floridana (Weiser and Muma) has been found to infect it. Different mulching types could affect the incidence of this pathogen. Dehydrated coffee husk and pulp (DCHP) is a byproduct readily available in southern Minas Gerais, where could be used as organic mulching in strawberry beds. The temporary contact of that material with the soil of a patch of natural vegetation could facilitate its colonization by edaphic predatory mites helpful in the control of strawberry pests. The objective of this work was to study the effect of mulching type on the population dynamics of the two-spotted spider mite, associate mites and N. floridana, in a greenhouse and in the field. The use of DCHP increased the number of edaphic Gamasina on strawberry plants—Proctolaelaps pygmaeus (Müller) (Melicharidae) and Blattisocius dentriticus (Berlese) (Blattisociidae) were observed on strawberry leaflets, mainly in nocturnal samplings, indicating their possible daily migration from soil to plants. Lower levels of two-spotted spider mite occurred on plants from pots or soil beds mulched with DCHP instead of polyethylene film, possibly because of the slightly higher levels of mites of the family Phytoseiidae and infection by N. floridana. Adding DCHP onto the floor of natural vegetation did not result in higher diversity or levels of gamasine mites on DCHP. Complementary studies should be conducted to find ways to increase diversity and density of those organisms in strawberry beds, in an attempt to improve biological control of strawberry pests. The decision to use DCHP for mulching should also take into account other factors such as strawberry yield, costs and efficiency of weed management, to be evaluated in subsequent studies.

Keywords

Coffee husk and pulp Mulch Two-spotted spider mite Edaphic predators Neozygites floridana 

Notes

Acknowledgements

We are grateful to Camila do N. Dainese and Jairo Freitas for their assistance in the conduction of this work. This study was funded by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brasil—Finance Code 001) and The Research Council of Norway through the SMARTCROP project (Project Number 244526).

References

  1. Andreazza F, Haddi K, Oliveira EE, Ferreira JAM (2016) Drosophila suzukii (Diptera: Drosophilidae) arrives at Minas Gerais State, a main strawberry production region in Brazil. Fla Entomol 99(4):796–798CrossRefGoogle Scholar
  2. Bernardi D, Botton M, Nava DE, Zawadneak MAC (2015) Guia para a identificação e monitoramento de pragas e seus inimigos naturais em morangueiro. Embrapa Uva e Vinho-Livro científicoGoogle Scholar
  3. Braham JE, Bressani R (1979) Coffee husk and pulp. Composition, technology, and utilization. International Development Research Center, Ottawa, p 95Google Scholar
  4. Brust GE (1994) Natural enemies in straw mulch reduce Colorado potato beetle populations and damage in potato. Biol Control 4:163–169CrossRefGoogle Scholar
  5. Cadavid LF, El-Sharkawy MA, Acosta A, Sánchez T (1998) Long-term effects of mulch, fertilization and tillage on cassava grown in sandy soils in northern Colombia. Field Crops Res 57(1):45–56CrossRefGoogle Scholar
  6. Carrillo D, Moraes GJ, Peña JE (2015) Prospects for biological control of plant feeding mites and other harmful organisms. Springer, BaselCrossRefGoogle Scholar
  7. Castilho RC, Duarte VS, Moraes GJ, Westrum K, Trandem N, Rocha LCD, Delalibera I Jr, Klingen I (2015a) Two-spotted spider mite and its natural enemies on strawberry grown as protected and unprotected crops in Norway and Brazil. Exp Appl Acarol 66(4):509–528CrossRefGoogle Scholar
  8. Castilho RC, Venancio R, Narita JPZ (2015b) Mesostigmata as biological control agents, with emphasis on Rhodacaroidea and Parasitoidsea. In: Carillo D, Moraes GJ, Peña JE (eds) Prospects for biological control of plant feeding mites and other harmful organisms. Springer, Basel, pp 1–32Google Scholar
  9. Cook HF, Valdes GSB, Lee HC (2006) Mulch effects on rainfall interception, soil physical characteristics and temperature under Zea mays L. Soil Tillage Res 91:227CrossRefGoogle Scholar
  10. Costa DMA, Melo HNDS, Ferreira SR (2007) Eficiência da cobertura morta na retenção de umidade no solo, vol 1. Holos, Rio Grande do Norte, pp 59–69Google Scholar
  11. Costa R, Saraiva A, Carvalho L, Duarte L (2014) The use of biodegradable mulch films on strawberry crop in Portugal. Sci Hortic 173:65–70CrossRefGoogle Scholar
  12. Croft BA, Strong WB, Messing RH, Dunley JE (1993) Effects of humidity on eggs and immature of Neoseiulus fallacis, Amblyseius andersoni, Metaseiulus occidentalis and Typhlodromus pyri: implications for biological control on apple, caneberry, strawberry and hop. Exp Appl Acarol 17:451–459CrossRefGoogle Scholar
  13. Deprá M, Poppe JL, Schmitz HJ, Toni DCde, Valente VLS (2014) The first records of the invasive pest Drosophila suzukii in the South American continent. J Pest Sci 87(3):379–383CrossRefGoogle Scholar
  14. Dick GL, Buschman LL (1995) Seasonal occurrence of a fungal pathogen, Neozygites adjarica (Entomophthorales: Neozygitaceae), infecting banks grass mites, Oligonychus pratensis and two spotted spider mites, Tetranychus urticae (Acari: Tetranychidae), in field corn. J Kans Entomol Soc 64:425–436Google Scholar
  15. Duso C, Chiarini F, Conte L, Bonora V, Dalla Montà L, Otto S (2004) Fogging can control Tetranychus urticae on greenhouse cucumbers. J Pest Sci 77:105–111CrossRefGoogle Scholar
  16. Erenstein O (2003) Smallholder conservation farming in the tropics and sub-tropics: a guide to the development and dissemination of mulching with crop residues and cover crops. Agric Ecosyst Environ 100:17–37CrossRefGoogle Scholar
  17. Filgueira FAR (2000) Novo Manual de Olericultura: Agrotecnologia moderna na produção e comercialização de hortaliças. Editora UFV, Viçosa, p 402Google Scholar
  18. Forge TA, Hogue E, Neilsen G, Neilsen D (2003) Effects of organic mulches on soil microfauna in the root zone of apple: implications for nutrient fluxes and functional diversity of the soil food web. Appl Soil Ecol 22(1):39–54CrossRefGoogle Scholar
  19. Galvão AS, Gondim MGC Jr, de Moraes GJ (2011) Life history of Proctolaelaps bulbosus feeding on the coconut mite Aceria guerreronis and other possible food types occurring on coconut fruits. Exp Appl Acarol 53:245–252CrossRefGoogle Scholar
  20. García-Mari F, Gonzalez-Zamora JE (1999) Biological control of Tetranychus urticae (Acari: Tetranychidae) with naturally occurring predators in strawberry plantings in Valencia, Spain. Exp Appl Acarol 23:487–495CrossRefGoogle Scholar
  21. Hanks RJ, Bowers SA, Bark LD (1961) Influence of soil surface conditions on net radiation, soil temperature, and evaporation. Soil Sci 91(4):233–238CrossRefGoogle Scholar
  22. Hoddle MS, Morse JG, Phillips PA, Faber BA, Jetter KM (2002) Avocado thrips: a new challenge for growers. Calif Agric 56:103–107CrossRefGoogle Scholar
  23. Inmet (2016) Instituto Nacional de Meteorologia. Estações Automáticas—Gráficos. Disponível em: http://www.inmet.gov.br/portal/index.php?r=home/page&page=rede_estacoes_auto_graf. Accessed 20 Oct 2016
  24. Jamieson LE, Stevens PS (2006) The effect of mulching on adult emergence of Kelly’s citrus thrips (Pezothrips kellyanus). N Z Plant Prot 59:42–46Google Scholar
  25. Jensen L, Simko B, Shock C, Saunders L (2003) Alternative methods for controlling onion thrips (Thrips tabaci) in Spanish onions. Or State Univ Malheur Exp Stn Spec Rep 1048:94–106Google Scholar
  26. Kęsik T, Maskalaniec T (2005) Effect of soil mulching on air and soil temperature in strawberry field. Acta Agrophys 6(1):17–124Google Scholar
  27. Kinjo H, Kunimi Y, Nakai M (2014) Effects of temperature on the reproduction and development of Drosophila suzukii (Diptera: Drosophilidae). Appl Entomol Zool 49:297–304CrossRefGoogle Scholar
  28. Kivijärvi P, Parikka P, Tuovinen T (2002) The effect of different mulches on yield, fruit quality and strawberry mite in organically grown strawberry. Organic production of fruit and berries. The Danish Institute of Agricultural Sciences, Department of Horticulture, Årslev, Denmark. Accessed 16 July 2016Google Scholar
  29. Klingen I, Wærsted G, Westrum K (2008) Overwintering and prevalence of Neozygites floridana (Zygomycetes: Entomophthorales) in hibernating females of Tetranychus urticae (Acari: Tetranychidae) under cold climatic conditions in strawberries. Exp Appl Acarol 46:231–245CrossRefGoogle Scholar
  30. Krantz GW, Walter DE (2009) A manual of acarology, 3rd edn. Texas Tech University Press, LubbockGoogle Scholar
  31. Lawson-Balagbo LM, Gondim MGC Jr, de Moraes GJ, Hanna R, Schausberger P (2008) Exploration on the acarine fauna on coconut palm in Brazil with emphasis on Aceria guerreronis (Acari: Eriophyidae) and its natural enemies. Bull Entomol Res 98:83–96CrossRefGoogle Scholar
  32. Li XY (2000) Soil and water conservation in arid and semiarid areas: the Chinese experience. Ann Arid Zone 39(4):377–393Google Scholar
  33. Lindquist EE, Krantz GW, Walter DE (2009) Order mesostigmata. In: Krantz GW, Walter DE (eds) A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock, pp 124–232Google Scholar
  34. Mathews CR, Bottrell DG, Brown MW (2002) A comparison of conventional and alternative understory management practices for apple production: multi-trophic effects. Appl Soil Ecol 21:221–231CrossRefGoogle Scholar
  35. Mathys G, Tencalla Y (1959) Note préliminaire sur la biologie et la valeur prédatice de Proctolaelaps hypudaei Oudms (Acarien: Mesostigmata: Aceosejidae). Stations Fédérales D’Essais Agricoles 600:645–654Google Scholar
  36. McMurtry JA, Moraes GJ, Famah Sourassou N (2013) Revision of lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18:297–320CrossRefGoogle Scholar
  37. McMurtry JA, Sourassou NF, Demite PR (2015) The Phytoseiidae (Acari: Mesostigmata) as biological control agents. In: Carillo D, Moraes GJ, Peña JE (eds) Prospects for Biological Control of Plant Feeding Mites and other Harmful Organisms. Springer, Basel, pp 133–149Google Scholar
  38. Metwalli AM, Abbassy MRA, Montaser SA, Mowafy MH (1991) Life history of the ascid mite Proctolaelaps pygmaeus Muller when fed on two different preys. Al-Azhar J Agric Res 13:237–246Google Scholar
  39. Moraes GJ, Venancio R, dos Santos VLV, Paschoal AD (2015) Potential of Ascidae, Blattisociidae and Melicharidae (Acari: Mesostigmata) as biological control agents of pest organisms. In: Carillo D, Moraes GJ, Peña JE (eds) Prospects for biological control of plant feeding mites and other harmful organisms. Springer, Basel, pp 33–75Google Scholar
  40. Morra L, Bilotto M, Cerrato D, Coppola R, Leone V, Mignoli E, Pasquariello MS, Petriccione M, Cozzolino E (2016) The Mater-Bi® biodegradable film for strawberry (Fragaria x ananassa Duch.) mulching: effects on fruit yield and quality. Ital J Agron 11:731Google Scholar
  41. Novotny V, Basset Y, Auga J, Boen W, Dal C, Drozd P, Kasbal M, Isua B, Kutil R, Manumbor M (1999) Predation risk for herbivorous insects on tropical vegetation: a search for enemy-free space and time. Aust J Ecol 24:477–483CrossRefGoogle Scholar
  42. Nyoike TW, Liburd OE (2013) Effect of Tetranychus urticae (Acari: Tetranychidae) on marketable yields of field-grown strawberries in north-central Florida. J Econ Entomol 106:1757–1766CrossRefGoogle Scholar
  43. Oliveira LS, Franca AS (2015) An overview of the potential uses for coffee husks. In: Coffee in health and disease prevention, vol 31. Academic press, pp 283–291CrossRefGoogle Scholar
  44. Oliveira AR, Moraes GJ, Demétrio CGE, Nardo EAE (2001) Efeito do vírus de poliedrose nuclear de Anticarsia gemmatalis sobre Oribatida edáficos (Arachnida: Acari) em um campo de soja, vol 13. Embrapa Meio Ambiente, Jaguariúna, p 32Google Scholar
  45. Onzo A, Hanna R, Zannou I, Sabelis MW, Yaninek JS (2003) Dynamics of refuge use: diurnal, vertical migration by predatory and herbivorous mites within cassava plants. Oikos 101:59–69CrossRefGoogle Scholar
  46. Parecis-Silva PV, Nuvoloni FM, Feres RJ (2016) Day vs. night: the importance of the circadian cycle over metacommunities and predator–prey densities. Int J Acarol 42(3):141–148CrossRefGoogle Scholar
  47. Pinzón J, Spence JR (2010) Bark-dwelling spider assemblages (Araneae) in the boreal forest: dominance, diversity, composition and life-histories. J Insect Conserv 14(5):439–458CrossRefGoogle Scholar
  48. R Development Core Team (2013) R: a language and environment for statistical computing, v.3.0.1. R foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  49. Resende FV, Souza LSD, Oliveira PSRD, Gualberto R (2005) Uso de cobertura morta vegetal no controle da umidade e temperatura do solo, na incidência de plantas invasoras e na produção da cenoura em cultivo de verão. Ciência e Agrotecnologia 29(1):100–105CrossRefGoogle Scholar
  50. Rivard I (1960) A technique for individual rearing of the predacious mite Melichares dentriticus (Berlese) (Acarina: Aceosejidae) with notes on its life history and behaviour. Can Entomol 92(11):834–839CrossRefGoogle Scholar
  51. Saigusa M, Oishi K, Ikumoto A, Iwasaki H, Terajima M (2000) Emergence patterns of small subtidal arthropods in relation to day/night, tidal, and surface/bottom factors: investigations in the Boreal Sea, Japan (Akkeshi, Hokkaido). J Oceanogr 56:295–310CrossRefGoogle Scholar
  52. Sánchez-Moreno S, Nicola NL, Ferris H, Zalom FG (2009) Effects of agricultural management on nematode–mite assemblages: soil food web indices as predictors of mite community composition. Appl Soil Ecol 41(1):107–117CrossRefGoogle Scholar
  53. Santos RSS (2014) Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae) attacking strawberry fruits in Brazil. Enciclopédia Biosfera 10:4005–4011Google Scholar
  54. Siqueira APP, Siqueira MFB (2013) Bokashi: adubo orgânico fermentado. Programa Rio Rural, Niterói, p 16 (Programa Rio Rural. Manual Técnico; 40)Google Scholar
  55. Van der Geest LP, Elliot SL, Breeuwer JAJ, Beerling EAM (2000) Diseases of mites. Exp Appl Acarol 24(7):497–560CrossRefGoogle Scholar
  56. Wang M, Sun YW (1986) Fruit trees and vegetables for arid and semi-arid areas in north-west China. J Arid Environ 11:3–16CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Fernanda de Cássia Neves Esteca
    • 1
  • Luis Rodolfo Rodrigues
    • 1
  • Gilberto José de Moraes
    • 1
  • Italo Delalibera Júnior
    • 1
  • Ingeborg Klingen
    • 2
  1. 1.Departamento de Entomologia e Acarologia, Escola Superior de Agricultura ‘Luiz de Queiroz’Universidade de São PauloPiracicabaBrazil
  2. 2.Norwegian Institute of Bioeconomy Research (NIBIO)ÅsNorway

Personalised recommendations