Advertisement

Molecular and morphological characterization of the predatory mite Amblyseius largoensis (Acari: Phytoseiidae): surprising similarity between an Asian and American populations

  • Debora B. Lima
  • Daniela Rezende-Puker
  • Renata S. Mendonça
  • Marie-Stephane Tixier
  • Manoel G. C. GondimJr.
  • José W. S. Melo
  • Daniel C. Oliveira
  • Denise Navia
Article

Abstract

The accurate characterization of biological control agents is a key step in control programs. Recently, Amblyseius largoensis from Thailand were introduced in Brazil to evaluate their efficiency for the control of the red palm mite, Raoiella indica. The aim of this study was to confirm their identification and to characterize the population from Thailand, comparing it to populations of the Americas and Indian Ocean islands. In addition, a population of A. largoensis from New Caledonia, Oceania, of which DNA sequences were available, was included in phylogenetic analyses. Morphometric data obtained for the population of A. largoensis from Thailand were compared to those of populations from Reunion Island and the Americas through univariate and multivariate analyses. Two DNA fragments were amplified and sequenced: the nuclear ribosomal region ITSS and the mitochondrial 12S rRNA. Haplotypes (12S rRNA) and genotypes (ITSS) were identified and phylogenetic analyses using both fragments were conducted separately and combined using maximum likelihood and the Bayesian information criterion. The integrative approach reveals morphometric and molecular variabilities among populations of A. largoensis and shows that the population identified as A. largoensis collected in Thailand, as well as that from New Caledonia, are conspecific to the populations of the Americas and Indian Ocean islands. Populations from the Americas and Asia are more related to each other than with that from the Indian Ocean islands. Hypotheses to explain this clustering are proposed. Data on the molecular intraspecific variability of this predatory mite from remote areas will be helpful for the development of molecular diagnosis.

Keywords

Integrative taxonomy Thailand Classical biological control Raoiella indica Molecular systematics 

Notes

Acknowledgements

Study was supported by Edital CNPq/MAPA/SDA No 64/2008 (Process No. 578190/2008-7). D.B. Lima received financial support from CNPq (PDJ-Proc. 150055/2017-0) and R.S. Mendonça from CAPES Foundation, Ministry of Education of Brazil (PNPD/Agronomia Proc. No. 18075866). D. Navia received a research fellowship from CNPq (PQ, Proc. No. 311398/2013-8).

Supplementary material

10493_2018_308_MOESM1_ESM.docx (243 kb)
Supplementary material 1 (DOCX 243 kb)

References

  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  2. Beard JJ (1999) Taxonomy and biological control: Neoseiulus cucumeris (Acari: Phytoseiidae), a case study. Aust J Entomol 38:51–59CrossRefGoogle Scholar
  3. Bowman HM, Hoy MA (2012) Molecular discrimination of phytoseiids associated with the red palm mite Raoiella indica (Acari: Tenuipalpidae) from Mauritius and South Florida. Exp Appl Acarol 57:395–407CrossRefPubMedGoogle Scholar
  4. Carrillo D, de Coss ME, Hoy MA, Peña JE (2011) Variability in response of four populations of Amblyseius largoensis (Acari: Phytoseiidae) to Raoiella indica (Acari: Tenuipalpidae) and Tetranychus gloveri (Acari: Tetranychidae) eggs and larvae. Biol Control 60:39–45CrossRefGoogle Scholar
  5. Carrillo D, Frank JH, Rodrigues JCV, Peña J (2012) A review of the natural enemies of the red palm mite, Raoiella indica (Acari: Tenuipalpidae). Exp Appl Acarol 57:347–360CrossRefPubMedGoogle Scholar
  6. Cavalcante ACC, Borges LR, Lourenção AL, de Moraes GJ (2015) Potential of two populations of Amblyseius swirskii (Acari: Phytoseiidae) for the control of Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) in Brazil. Exp Appl Acarol 67:523–533CrossRefPubMedGoogle Scholar
  7. Chant DA, McMurtry JA (1994) A review of the subfamilies Phytoseiinae and Typholodrominae (Acari: Phytoseiidae). Int J Acarol 20:223–310CrossRefGoogle Scholar
  8. Chant DA, McMurtry JA (2005) Review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part IV. The tribe Euseiini N. tribe, subtribes Typhlodromalina, N. subtribe, Euseiina N. subtribe and Ricoseiina N. subtribe. Int J Acarol 31:187–222CrossRefGoogle Scholar
  9. Chant DA, McMurtry JA (2007) Illustrated keys and diagnoses for the genera and subgenera of the Phytoseiidae of the world (Acari: Mesostigmata). Indira Publishing House, West BloomfieldGoogle Scholar
  10. Chant DA, Yoshida-Shaul E (1991) Adult ventral setal patterns of the family Phytoseiidae (Acari: Gamasida). Int J Acarol 17:187–199CrossRefGoogle Scholar
  11. Çobanoğlu S (1989) Some Phytoseiidae mite species (Acarina: Phytoseiidae) determined in citrus orchards in some regions of Turkey. Turk Entomol Derg 13:163–178Google Scholar
  12. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefPubMedPubMedCentralGoogle Scholar
  13. de Moraes GJ (1987) Importance of taxonomy in biological control. Insect Sci Appl 8:841–844Google Scholar
  14. de Moraes GJ, Castro TMMG, Kreiter S, Quilici S, Gondim MGC Jr, Sá LAN (2012) Search for natural enemies of Raoiella indica Hirst in Reunion Island (Indian Ocean). Acarologia 52:129–134CrossRefGoogle Scholar
  15. Domingos CA, Oliveira LO, de Morais F, Navia D, de Moraes GJ, Gondim MGC Jr (2013) Comparison of two populations of the pantropical predator Amblyseius largoensis (Acari: Phytoseiidae) for biological control of Raoiella indica (Prostigmata: Tenuipalpidae). Exp Appl Acarol 60:83–93CrossRefPubMedGoogle Scholar
  16. Dowling APG, Ochoa R, Beard JJ, Welbourn WC, Ueckermann EA (2012) Phylogenetic investigation of the genus Raoiella (Prostigmata: Tenuipalpidae): diversity, distribution and world invasion. Exp Appl Acarol 57:257–269CrossRefPubMedGoogle Scholar
  17. Etienne J, Flechtmann CHW (2006) First record of Raoiella indica (Hirst, 1924) (Acari: Tenuipalpidae) in Guadeloupe and Saint Martin, West Indies. Int J Acarol 32:331–332CrossRefGoogle Scholar
  18. Ferrero M, de Moraes GJ, Kreiter S, Tixier M-S, Knapp M (2007) Life tables of the predatory mite Phytoseiulus longipes feeding on Tetranychus evansi at four temperatures (Acari: Phytoseiidae, Tetranychidae). Exp Appl Acarol 41:45–53CrossRefPubMedGoogle Scholar
  19. Flechtmann CHW, Etienne J (2004) The red palm mite, Raoiella indica Hirst, a threat to palms in the Americas (Acari: Prostigmata: Tenuipalpidae). Syst Appl Acarol 9:109–110CrossRefGoogle Scholar
  20. Furtado IP, de Moraes GJ, Kreiter S, Tixier M-S, Knapp M (2007) Potential of a Brazilian population of the predatory mite Phytoseiulus longipes as a biological control agent of Tetranychus evansi (Acari: Phytoseiidae, Tetranychidae). Biol Control 42:139–147CrossRefGoogle Scholar
  21. Gallego CE, Aterrado ED, Batomalaque CG (2003) Biology of the false spider mite, Rarosiella cocosae Rimando, infesting coconut palms in Camiguin, northern Mindanao (Philippines). Philipp Entomol 17:187Google Scholar
  22. Gondim MGC Jr, Castro TMMG, Marsaro AL Jr, Navia D, Melo JWS, Demite PR, de Moraes GJ (2012) Can the red palm mite threaten the Amazon vegetation? Syst Biodivers 10:527–535CrossRefGoogle Scholar
  23. Gordh G, Beardsley JW (1999) Taxonomy and Biological control. In: Fisher TW, Bellows TS, Caltagirone LE, Dahlsten DL, Huffaker CB, Gordh G (eds) Handbook of biological control principles and applications. Academic Press, San Diego, pp 45–55CrossRefGoogle Scholar
  24. Gotoh T, Gutierrez J, Navajas M (1998) Molecular comparison of the sibling species Tetranychus pueraricola Ehara et Gotoh and T. urticae Koch (Acari: Tetranychidae). Entomol Sci 1:55–57Google Scholar
  25. Grismer LL, Wood PL Jr, Anuar S, Muin MA, Quah ESH, McGuire JA, Brown RM, Tri NV, Thai PH (2013) Integrative taxonomy uncovers high levels of cryptic species diversity in Hemiphyllodactylus Bleeker, 1860 (Squamata: Gekkonidae) and the description of a new species from Peninsular Malaysia. Zool J Linn Soc 169:849–880CrossRefGoogle Scholar
  26. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefGoogle Scholar
  27. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453CrossRefPubMedGoogle Scholar
  28. Institute SAS (2008) SAS/STAT User’s guide, version 8.02, TS level 2 MO. SAS Institute, CaryGoogle Scholar
  29. Jeyaprakash A, Hoy MA (2002) Mitochondrial 12S rRNA sequences used to design a molecular ladder assay to identify six commercially available phytoseiids (Acari: Phytoseiidae). Biol Control 25:136–142CrossRefGoogle Scholar
  30. Kane EC, Ochoa R (2006) Detection and identification of the red palm mite Raoiella indica Hirst (Acari: Tenuipalpidae). USDA-ARS, Beltsville, v 6. http://www.sel.barc.usda.gov/acari/PDF/indicaGuide.pdf
  31. Kane EC, Ochoa R, Erbe EF (2005) Raoiella indica Hist (Acari: Tenuipalpidae): an island-hopping mite pest in the Caribbean. Abstract. ESA meeting, Fort Lauderdale. http://www.doc-developpement-durable.org/file/Arbres-Fruitiers/FICHES_ARBRES/Palmier-dattier/maladies/Raoiella%20indica%20Hirst_Trinidad.pdf. Accessed 20 Apr 2018
  32. Kanouh M, Tixier M-S, Okassa M, Kreiter S (2010a) Phylogenetic and biogeographic analysis of the genus Phytoseiulus (Acari: Phytoseiidae). Zool Scr 39:450–461CrossRefGoogle Scholar
  33. Kanouh M, Tixier M-S, Guichou S, Brigitte C, Kreiter S (2010b) Two synonymy cases within the genus Neoseiulella (Acari: Phytoseiidae): is the molecular evidence so evident? Biol J Linn Soc 101:323–344CrossRefGoogle Scholar
  34. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  35. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  36. Lindquist EE, Evans GO (1965) Taxonomic concept in the Ascidae, with a modified setal nomenclature for the idiosoma of the Gamasina (Acari: Mesostigmata). Mem Entomol Soc Can 47:5–66CrossRefGoogle Scholar
  37. Maddison WP, Maddison DR (2017) Mesquite: a modular system for evolutionary analysis. Version 3.31 http://mesquiteproject.org. Accessed 20 Apr 2018
  38. Mahr DL, McMurtry JA (1979) Mass breeding studies involving populations of Typhlodromus citri Garman & McGregor, T. arboreus Chant and a sibling species of each (Mesostigmata: Phytoseiidae). Int J Acarol 5:155–161CrossRefGoogle Scholar
  39. Marsaro AL Jr, Navia D, Gondim MGC Jr, Duarte OR, Castro TMMG, Moreira GA M (2010) Host plants of the red palm mite, Raoiella indica Hirst (Tenuipalpidae), in Brazil. In: Moraes G J, Castilho RC, Flechtmann CHW (eds) abstract book of the XIII International Congress of Acarology, Recife, p 145Google Scholar
  40. McMurtry JA, Badii MH (1989) Reproductive compatibility in widely separated populations of three species of phytoseiid mites (Acari: Phytoseiidae). Pan Pac Entomol 65:397–402Google Scholar
  41. McMurtry JA, Oatman ER, Fleschner CA (1971) Phytoseiid mites on some tree and row crops and adjacent wild plants in Southern California. J Econ Entomol 64:405–408CrossRefGoogle Scholar
  42. McMurtry JA, Mahr DL, Johnson HG (1976) Geographic races in the predaceous mite, Amblyseius potentillae (Acari: Phytoseiidae). Int J Acarol 2:23–28CrossRefGoogle Scholar
  43. Mendonça RS, Navia D, Diniz IR, Auger P, Navajas M (2011) A critical review on some closely related species of Tetranychus sensu stricto (Acari: Tetranychidae) in the public DNA sequences databases. Exp Appl Acarol 55:1–23CrossRefPubMedGoogle Scholar
  44. Miller AD, Skoracka A, Navia D, Mendonça RS, Szydło W, Schultz MB, Smith CM, Truol G, Hoffmann AA (2013) Phylogenetic analyses reveal extensive cryptic speciation and host specialization in an economically important mite taxon. Mol Phylogenet Evol 66:928–940CrossRefPubMedGoogle Scholar
  45. Navajas M, Fenton B (2000) The application of molecular markers in the study of diversity in acarology: a review. Exp Appl Acarol 24:751–774CrossRefPubMedGoogle Scholar
  46. Navajas M, Lagnel J, Gutierrez J, Boursot P (1998) Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity 80:742–752CrossRefPubMedGoogle Scholar
  47. Navajas M, Lagnel J, Fauvel G, de Moraes GJ (1999) Sequence variation of ribosomal internal transcribed spacers (ITS) in commercially important Phytoseiidae mites. Exp Appl Acarol 23:851–859CrossRefPubMedGoogle Scholar
  48. Navia D, Domingos CA, Mendonça RS, Ferragut F, Rodrigues MAN, de Morais EGF, Tixier M-S, Gondim MGC Jr (2014) Reproductive compatibility and genetic and morphometric variability among populations of the predatory mite, Amblyseius largoensis (Acari: Phytoseiidae), from Indian Ocean Islands and the Americas. Biol Control 72:17–29CrossRefGoogle Scholar
  49. Oca LM, D’Elía G, Pérez Miles F (2016) An integrative approach for species delimitation in the spider genus Grammostola (Theraphosidae, Mygalomorphae). Zool Scr 45:322–333CrossRefGoogle Scholar
  50. Okassa M, Tixier M-S, Cheval B, Kreiter S (2009) Molecular and morphological evidence for new species status within the genus Euseius (Acari: Phytoseiidae). Can J Zool 87:689–698CrossRefGoogle Scholar
  51. Okassa M, Tixier M-S, Kreiter S (2010) Morphological and molecular diagnostics of Phytoseiulus persimilis and Phytoseiulus macropilis (Acari: Phytoseiidae). Exp Appl Acarol 52:291–303CrossRefPubMedGoogle Scholar
  52. Okassa M, Kreiter S, Guichou S, Tixier M-S (2011) Molecular and morphological boundaries of the predator Neoseiulus californicus McGregor (Acari: Phytoseiidae). Biol J Linn Soc 104:393–406CrossRefGoogle Scholar
  53. Oliveira DC (2015) Exploration of potential agents for the biological control of the red palm mite, Raoiella indica Hirst (Acari: Tenuipalpidae), on coconut palms in Brazil. Thesis Escola Superior de Agricultura Luiz de Queiroz, BrazilGoogle Scholar
  54. Peña JE, Rodrigues JCV, Roda A, Carrillo D, Osborne LS (2009) Predator–prey dynamics and strategies for control of the red palm mite (Raoiella indica) (Acari: Tenuipalpidae) in areas of invasion in the Neotropics. In: Palevsky E, Weintraub PG, Gerson U, Simoni S (eds) Proceedings of the 2nd WG meeting of IOBC/WPRS, Florence, Itália, pp 69–79Google Scholar
  55. Petrova TV, Tesakov AS, Kowalskaya YM, Abramson NI (2016) Cryptic speciation in the narrow-headed vole Lasiopodomys (Stenocranius) gregalis (Rodentia: Cricetidae). Zool Scr 45:618–629CrossRefGoogle Scholar
  56. Roda A, Dowling A, Welbourn C, Peña JE, Rodrigues JCV, Hoy MA, Ochoa R, Duncan RA, De Chi W (2008) Red palm mite situation in the Caribbean and Florida. Proc Caribbean Food Crops Soc 44:80–87Google Scholar
  57. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  58. Rowell HJ, Chant DA, Hansell RIC (1978) The determination of setal homologies and setal patterns on the dorsal shield in the family Phytoseiidae (Acarina: Mesostigmata). Can Entomol 110:859–876CrossRefGoogle Scholar
  59. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA Sequence Polymorphism analysis of large datasets. Mol Biol Evol 34:3299–3302CrossRefGoogle Scholar
  60. Santos VV, Tixier M-S (2016) Which molecular markers for assessing which taxonomic level? The case study of the mite family Phytoseiidae (Acari: Mesostigmata). Cladistics 33:251–267CrossRefGoogle Scholar
  61. Silva RV, Narita JPZ, Vichitbandha P, Chandrapatya A, Konvipasruang P, Kongchuensin M, Moraes GJ (2014) Prospection for predatory mites to control coconut pest mites in Thailand, with taxonomic descriptions of collected Mesostigmata (Acari). J Nat Hist 48:699–719CrossRefGoogle Scholar
  62. Sourassou NF, Hanna R, Zannou I, Breeuwer JAJ, de Moraes G, Sabelis MW (2012) Morphological, molecular and cross-breeding analysis of geographic populations of coconut-mite associated predatory mites identified as Neoseiulus baraki: evidence for cryptic species? Exp Appl Acarol 57:15–36CrossRefGoogle Scholar
  63. Staden R, Beal KF, Bonfield JK (1998) The staden package. In: Misener S, Krawetz SA (eds) Methods in molecular biology. The Humana Press, Totowa, pp 115–130Google Scholar
  64. Stiling P (1993) Why do natural enemies fail in classical biological control programs? Am Entomol 39:31–37CrossRefGoogle Scholar
  65. Taylor B, Rahman PM, Murphy ST, Sudheendrakumar VV (2012) Within-season dynamics of red palm mite (Raoiella indica) and phytoseiid predators on two host palm species in south-west India. Exp Appl Acarol 57:331–345CrossRefPubMedGoogle Scholar
  66. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  67. Tixier M-S (2013) Statistical approaches for morphological continuous characters: a conceptual model applied to Phytoseiidae (Acari: Mesostigmata). Zool Scr 42:327–334CrossRefGoogle Scholar
  68. Tixier M-S, Kreiter S, Cheval B, Auger P (2003) Morphometric variation between populations of Kampimodromus aberrans (Oudemans) (Acari: Phytoseiidae). Implications for the taxonomy of the genus. Invertebr Syst 17:349–358CrossRefGoogle Scholar
  69. Tixier M-S, Kreiter S, Croft BA, Cheval B (2004) Morphological and molecular differences in the genus Kampimodromus Nesbitt: implications for taxonomy. In: Weigmann G, Alberti G, Wohltmann A, Ragusa S (eds) Acarine biodiversity in the natural and human sphere. 5th symposium of the European Association of Acarologists, Berlin. Phytophaga, vol 14, 361–375Google Scholar
  70. Tixier M-S, Kreiter S, Ferragut F, Cheval B (2006a) The suspected synonymy of Kampimodromus hmiminai and Kampimodromus adrianae (Acari: Phytoseiidae): morphological and molecular investigations. Can J Zool 84:1216–1222CrossRefGoogle Scholar
  71. Tixier M-S, Kreiter S, Barbar Z, Ragusa S, Cheval B (2006b) The status of two cryptic species: Typhlodromus exhilaratus Ragusa and Typhlodromus phialatus Athias-Henriot (Acari: Phytoseiidae): consequences for taxonomy. Zool Scr 35:115–122CrossRefGoogle Scholar
  72. Tixier M-S, Guichou S, Kreiter S (2008) Morphological variation of the species Neoseiulus californicus (McGregor) (Acari: Phytoseiidae): importance for diagnostic reliability and synonymies. Invertebr Syst 22:453–469CrossRefGoogle Scholar
  73. Tixier M-S, Ferrero M, Okassa M, Guichou S, Kreiter S (2010) On the specific identity of specimens of Phytoseiulus longipes Evans (Mesostigmata: Phytoseiidae) showing different feeding behaviours: morphological and molecular analyses. Bull Entomol Res 100:569–579CrossRefPubMedGoogle Scholar
  74. Tixier M-S, Tsolakis H, Ragusa S, Poinso A, Ferrero M, Okassa M, Kreiter S (2011) Integrative taxonomy demonstrates the unexpected synonymy between two predatory mite species: Cydnodromus idaeus and C. picanus (Acari: Phytoseiidae). Invertebr Syst 25:273–281CrossRefGoogle Scholar
  75. Tixier M-S, Okassa M, Kreiter S (2012a) An integrative morphological and molecular diagnostics for Typhlodromus pyri (Acari: Phytoseiidae). Zool Scr 41:68–78CrossRefGoogle Scholar
  76. Tixier M-S, Hernandes FA, Guichou S, Kreiter S (2012b) The puzzle of DNA sequences of Phytoseiidae (Acari: Mesostigmata) in the public GenBank database. Invertebr Syst 25:389–406CrossRefGoogle Scholar
  77. Tixier M-S, Baldassar A, Duso C, Kreiter S (2013) Phytoseiidae in European grape (Vitis vinifera L.): bio-ecological aspects and Keys to species (Acari: Mesostigmata). Zootaxa 3721:101–142CrossRefPubMedGoogle Scholar
  78. Tixier M-S, dos Santos VV, Douin M, Duso C, Kreiter S (2017) Great molecular variation within the species Phytoseius finitimus (Acari: Phytoseiidae): implications for diagnosis decision within the mite family Phytoseiidae. Acarologia 57:493–515Google Scholar
  79. Tsolakis H, Tixier M-S, Kreiter S, Ragusa S (2012) The concept of genus within family Phytoseiidae (Acari: Parasitiformes): historical review and phylogenetic analyses of the genus Neoseiulus Hughes. Zool J Linn Soc 165:253–273CrossRefGoogle Scholar
  80. Yang C, Li YX, Yang XM, Sun JT, Xu XN, Hong XY (2012) Genetic variation among natural populations of Euseius nicholsi (Acari: Phytoseiidae) from China detected using mitochondrial coxI and nuclear rDNA ITS sequences. Syst Appl Acarol 17:171–181Google Scholar
  81. Zannou ID, Negloh K., Hanna R., Houadakpode S., Sabelis MW (2010) Mite diversity in coconut habitat in West and East Africa. In: XIII International Congress of Acarology, Recife, Brazil, p 295Google Scholar
  82. Zhang F, Yu D, Luo Y, Ho SYW, Wang B, Zhu C (2014) Cryptic diversity, diversification and vicariance in two species complexes of Tomocerus (Collembola, Tomoceridae) from China. Zool Scr 43:393–404CrossRefGoogle Scholar
  83. Zucchi RA (1990) A taxonomia e o manejo de pragas. In: Crocomo WB (ed) Manejo Integrado de Pragas. UNESP/CETESB, São Paulo, pp 57–69Google Scholar
  84. Zucchi RA (2002) A taxonomia e o controle biológico de pragas. In: Parra JRP, Botelho PSM, Corrêa-Ferreira BS, Bento JMS (eds) Controle biológico no Brasil: parasitóides e predadores. São Paulo, Manole, pp 17–27Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Debora B. Lima
    • 1
  • Daniela Rezende-Puker
    • 1
  • Renata S. Mendonça
    • 2
  • Marie-Stephane Tixier
    • 3
  • Manoel G. C. GondimJr.
    • 1
  • José W. S. Melo
    • 4
  • Daniel C. Oliveira
    • 5
  • Denise Navia
    • 6
  1. 1.Departamento de Agronomia – EntomologiaUniversidade Federal Rural de PernambucoRecifeBrazil
  2. 2.Faculdade de Agronomia e Medicina VeterináriaUniversidade de BrasíliaBrasíliaBrazil
  3. 3.Montpellier SupAgro, The Center for Biology and Management of PopulationsMontferrier-sur-LezFrance
  4. 4.Departamento de FitotecniaUniversidade Federal do CearáFortalezaBrazil
  5. 5.Departamento de Entomologia e AcarologiaEscola Superior de Agricultura “Luiz de Queiroz”PiracicabaBrazil
  6. 6.Embrapa Recursos Genéticos e BiotecnologiaBrasíliaBrazil

Personalised recommendations