Advertisement

Experimental and Applied Acarology

, Volume 76, Issue 2, pp 185–196 | Cite as

Preference and performance of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae) on strawberry cultivars

  • Ya-Jun Gong
  • Jin-Cui Chen
  • Liang Zhu
  • Li-Jun Cao
  • Gui-Hua Jin
  • Ary A. Hoffmann
  • Chuan-Fei Zhong
  • Peng Wang
  • George Lin
  • Shu-Jun Wei
Article

Abstract

The two-spotted spider mite (TSSM), Tetranychus urticae Koch (Acari: Tetranychidae), is one of the most serious pests of strawberry worldwide. Understanding the preference of TSSM for particular cultivars of strawberry and performance on them helps identify host-plant resistance to this pest mite. In this study, we tested preference, developmental duration, fecundity and population levels of TSSM on 14 strawberry cultivars. TSSM showed strong preference for the Chinese cultivars of Yanxiang, Baixuegongzhu, and Jingtaoxiang. Development of TSSM on the cultivars varied from 32.32 to 36.82 days; it was longest on the cultivars Hongxiutianxiang and Baixuegongzhu, and shortest on Yanxiang, Jingzangxiang, and Darselect as well as on a wild variety (Wuye). TSSM had high fecundity on the cultivars Yanxiang, Taoxun, Hongxiutianxiang, Jingzangxiang, Albion and Baixuegongzhu as well as on Wuye, whereas egg production was lowest on Sweet Charlie, Portola, Akihime, and Benihoppe. After 28 days of plant infestation with 10 pairs of adults, the cultivars Yanxiang, Taoxun, Jingzangxiang, Jingtaoxiang, and Baixuegongzhu had the highest number of mites (> 1000 per plant), whereas mite numbers on Albion and Camarosa were low. The population size of TSSM was correlated with fecundity, but no correlation was found between other preference/performance measures. Our study suggests that a rapid increase of population size of TSSM on cultivars of strawberry is related to high fecundity, and also that there are substantial differences in preference and performance across cultivars.

Keywords

Tetranychus urticae Strawberry Host Cultivar Developmental duration Fecundity 

Notes

Acknowledgements

The research was funded by the Beijing Municipal Science and Technology Project (D171100001617002), Innovative Team of Beijing Academy of Agriculture and Forestry Sciences (JNKYT201605) and Beijing Key Laboratory of Environmentally Friendly Pest Management on Northern Fruits (BZ0432).

Supplementary material

10493_2018_295_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 kb)

References

  1. Abraham CM, Braman SK, Oetting RD, Hinkle NC (2013) Pesticide compatibility with natural enemies for pest management in greenhouse gerbera daisies. J Econ Entomol 106:1590–1601CrossRefGoogle Scholar
  2. Bernays EA, Chapman RF (2007) Host-plant selection by phytophagous insects, vol 2. Springer, BerlinGoogle Scholar
  3. Bi JL, Niu ZM, Yu L, Toscano NC (2016) Resistance status of the carmine spider mite, Tetranychus cinnabarinus and the twospotted spider mite, Tetranychus urticae to selected acaricides on strawberries. Insect Sci 23:88–93CrossRefGoogle Scholar
  4. Bostanian NJ, Trudeau M, Lasnier J (2003) Management of the two-spotted spider mite, Tetranychus urticae [Acari: Tetranychidae] in eggplant fields. Phytoprotection 84:1–8CrossRefGoogle Scholar
  5. Brandenburg R, Kennedy G (1982) Intercrop relationships and spider mite dispersal in a corn/peanut agro-ecosystem. Entomol Exp Appl 32:269–276CrossRefGoogle Scholar
  6. Castilho RC, Duarte VS, de Moraes GJ, Westrum K, Trandem N, Rocha LC, Delalibera I Jr, Klingen I (2015) Two-spotted spider mite and its natural enemies on strawberry grown as protected and unprotected crops in Norway and Brazil. Exp Appl Acarol 66:509–528CrossRefGoogle Scholar
  7. Costa AF, Teodoro PE, Bhering LL, Fornazier MJ, Andrade JS, Martins DS, Zanuncio Junior JS (2017) Selection of strawberry cultivars with tolerance to Tetranychus urticae (Acari: Tetranychidae) and high yield under different managements. Genet Mol Res 16:gmr16029599Google Scholar
  8. Dittmann L, Schausberger P (2017) Adaptive aggregation by spider mites under predation risk. Sci Rep 7:10609CrossRefGoogle Scholar
  9. Ferrer RMG, Scheerens JC, Erb WA (1993) In vitro screening of 76 strawberry cultivars for twospotted spider mite resistance. HortScience 28:841–844Google Scholar
  10. Gerson U, Weintraub PG (2012) Mites (Acari) as a factor in greenhouse management. Annu Rev Entomol 57:229–247CrossRefGoogle Scholar
  11. Gigon V, Camps C, Le Corff J (2016) Biological control of Tetranychus urticae by Phytoseiulus macropilis and Macrolophus pygmaeus in tomato greenhouses. Exp Appl Acarol 68:55–70CrossRefGoogle Scholar
  12. Giménez-Ferrer MR, Alan EW, Bert BL, Joseph SC (1994) Host-pest relationships between the twospotted spider mite (Acari: Tetranychidae) and strawberry cultivars with differing levels of resistance. J Econ Entomol 87:168–175CrossRefGoogle Scholar
  13. Gong YJ, Cao LJ, Wang ZH, Zhou XY, Chen JC, Hoffmann AA, Wei SJ (2018) Efficacy of carbon dioxide treatments for the control of the two-spotted spider mite, Tetranychus urticae, and treatment impact on plant seedlings. Exp Appl Acarol.  https://doi.org/10.1007/s10493-018-0251-1 CrossRefPubMedGoogle Scholar
  14. Gonzalez-Dominguez SG, Santillan-Galicia MT, Gonzalez-Hernandez V, Suarez Espinosa J, Gonzalez-Hernandez H (2015) Variability in damage caused by the mite Tetranychus urticae (Trombidiformes: Tetranychidae) Koch on three varieties of strawberry. J Econ Entomol 108:1371–1380CrossRefGoogle Scholar
  15. Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouze P, Grbic V, Osborne EJ, Dermauw W, Ngoc PC, Ortego F, Hernandez-Crespo P, Diaz I, Martinez M, Navajas M, Sucena E, Magalhaes S, Nagy L, Pace RM, Djuranovic S, Smagghe G, Iga M, Christiaens O, Veenstra JA, Ewer J, Villalobos RM, Hutter JL, Hudson SD, Velez M, Yi SV, Zeng J, Pires-daSilva A, Roch F, Cazaux M, Navarro M, Zhurov V, Acevedo G, Bjelica A, Fawcett JA, Bonnet E, Martens C, Baele G, Wissler L, Sanchez-Rodriguez A, Tirry L, Blais C, Demeestere K, Henz SR, Gregory TR, Mathieu J, Verdon L, Farinelli L, Schmutz J, Lindquist E, Feyereisen R, Van de Peer Y (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492CrossRefGoogle Scholar
  16. Hata FT, Ventura MU, Carvalho MG, Miguel AL, Souza MS, Paula MT, Zawadneak MA (2016) Intercropping garlic plants reduces Tetranychus urticae in strawberry crop. Exp Appl Acarol 69:311–321CrossRefGoogle Scholar
  17. Howell AD, Daugovish O (2013) Biological control of Eotetranychus lewisi and Tetranychus urticae (Acari: Tetranychidae) on strawberry by four phytoseiids (Acari: Phytoseiidae). J Econ Entomol 106:80–85CrossRefGoogle Scholar
  18. Jin GH, Gong YJ, Qian ZW, Zhu L, Wang ZH, Chen JC, Wei SJ (2016) Selectivity and fitness of the two-spotted spider mite, Tetranychus urticae (Acarina: Tetranychidae) to different varieties of eggplant. Acta Entomol Sin 59:328–336Google Scholar
  19. Khajehali J, Van Nieuwenhuyse P, Demaeght P, Tirry L, Van Leeuwen T (2011) Acaricide resistance and resistance mechanisms in Tetranychus urticae populations from rose greenhouses in The Netherlands. Pest Manag Sci 67:1424–1433CrossRefGoogle Scholar
  20. Khanamani M, Fathipour Y, Hajiqanbar H (2013) Population growth response of Tetranychus urticae to eggplant quality: application of female age-specific and age-stage, two-sex life tables. Int J Acarol 39:638–648CrossRefGoogle Scholar
  21. Koveos DS, Suzuki T, Terzidou A, Kokkari A, Floros G, Damos P, Kouloussis NA (2017) Egg hatching response to a range of ultraviolet-B (UV-B) radiation doses for four predatory mites and the herbivorous spider mite Tetranychus urticae. Exp Appl Acarol 71:35–46CrossRefGoogle Scholar
  22. Krainacker D, Carey J (1990) Spatial and temporal dynamics of two spotted spider mites, Tetranychus urticae Koch (Acari, Tetranychidae). Jof Appl Entomol 109:481–489CrossRefGoogle Scholar
  23. Kwon DH, Clark JM, Lee SH (2015) Toxicodynamic mechanisms and monitoring of acaricide resistance in the two-spotted spider mite. Pestic Biochem Phys 121:97–101CrossRefGoogle Scholar
  24. Monteiro LB, Kuhn TMA, Mogor AF, da Silva EDB (2014) Biology of the two-spotted spider mite on strawberry plants. Neotrop Entomol 43:183–188CrossRefGoogle Scholar
  25. Mworia JK, Murungi LK, Losenge T, Meyhöfer R (2017) Plant nutrition impacts host selection in red spider mites. Afr J Plant Sci 11:35–46Google Scholar
  26. Najafabadi SS, Shoushtari RV, Zamani AA, Arbabi M, Farazmand H (2014) Life parameters of Tetranychus urticae (Acari: Tetranychidae) on six common bean cultivars. J Econ Entomol 107:614–622CrossRefGoogle Scholar
  27. Osakabe MH (2002) Which predatory mite can control both a dominant mite pest, Tetranychus urticae, and a latent mite pest, Eotetranychus asiaticus, on strawberry? Exp Appl Acarol 26:219–230CrossRefGoogle Scholar
  28. Oyamada K, Murai T (2013) Effect of fumigation of high concentration carbon dioxide on two spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) and strawberry runner plant. Jpn J Appl Entomol Z 57:249–256CrossRefGoogle Scholar
  29. Park YL, Lee JH (2005) Impact of two spotted spider mite (Acari: Tetranychidae) on growth and productivity of glasshouse cucumbers. J Econ Entomol 98:457–463CrossRefGoogle Scholar
  30. Rhodes EM, Liburd OE (2006) Evaluation of predatory mites and Acramite for control of twospotted spider mites in strawberries in north central Florida. J Econ Entomol 99:1291–1298CrossRefGoogle Scholar
  31. Sato ME, Da Silva MZ, De Souza Filho MF, Matioli AL, Raga A (2007) Management of Tetranychus urticae (Acari: Tetranychidae) in strawberry fields with Neoseiulus californicus (Acari: Phytoseiidae) and acaricides. Exp Appl Acarol 42:107–120CrossRefGoogle Scholar
  32. Sedaratian A, Fathipour Y, Moharramipour S (2011) Comparative life table analysis of Tetranychus urticae (Acari: Tetranychidae) on 14 soybean genotypes. Insect Sci 18:541–553CrossRefGoogle Scholar
  33. Seki K (2016) Leaf morphology-assisted selection for resistance to two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) in carnations (Dianthus caryophyllus L.). Pest Manag Sci 72:1926–1933CrossRefGoogle Scholar
  34. Suzuki T, Ghazy NA, Amano H, Ohyama K (2012) A high-performance humidity control system for tiny animals: demonstration of its usefulness in testing egg hatchability of the two-spotted spider mite, Tetranychus urticae. Exp Appl Acarol 58:101–110CrossRefGoogle Scholar
  35. Tanaka M, Yase J, Aoki S, Sakurai T, Kanto T, Osakabe M (2016) Physical control of spider mites using ultraviolet-B with light reflection sheets in greenhouse strawberries. J Econ Entomol 109:1758–1765CrossRefGoogle Scholar
  36. Van Leeuwen T, Vanholme B, Van Pottelberge S, Van Nieuwenhuyse P, Nauen R, Tirry L, Denholm I (2008) Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. Proc Natl Acad Sci USA 105:5980–5985CrossRefGoogle Scholar
  37. Van Leeuwen T, Dermauw W, Grbic M, Tirry L, Feyereisen R (2013) Spider mite control and resistance management: does a genome help? Pest Manag Sci 69:156–159CrossRefGoogle Scholar
  38. Van Nieuwenhuyse P, Van Leeuwen T, Khajehali J, Vanholme B, Tirry L (2009) Mutations in the mitochondrial cytochrome b of Tetranychus urticae Koch (Acari: Tetranychidae) confer cross-resistance between bifenazate and acequinocyl. Pest Manag Sci 65:404–412CrossRefGoogle Scholar
  39. Vassiliou VA, Kitsis P (2013) Acaricide resistance in Tetranychus urticae (Acari: Tetranychidae) populations from Cyprus. J Econ Entomol 106:1848–1854CrossRefGoogle Scholar
  40. West SA, Cunningham JP (2002) A general model for host plant selection in phytophagous insects. J Theor Biol 214:499–513CrossRefGoogle Scholar
  41. Wu S, Xie H, Li M, Xu X, Lei Z (2016) Highly virulent Beauveria bassiana strains against the two-spotted spider mite, Tetranychus urticae, show no pathogenicity against five phytoseiid mite species. Exp Appl Acarol 70:421CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijingChina
  2. 2.School of BioSciences, Bio21 InstituteThe University of MelbourneMelbourneAustralia
  3. 3.Beijing Academy of Forestry and Pomology SciencesBeijing Academy of Agriculture and Forestry SciencesBeijingChina
  4. 4.Dow AgroSciences (China) Co., Ltd.ShanghaiChina
  5. 5.TAFS, Dow AgroSciences TaiwanPingtungChina

Personalised recommendations