Experimental and Applied Acarology

, Volume 75, Issue 3, pp 355–368 | Cite as

Evidence of cryptic species in the genus Tinaminyssus (Acari: Rhinonyssidae) based on morphometrical and molecular data

  • Manuel de RojasEmail author
  • Jorge Doña
  • Roger Jovani
  • Ivan Dimov
  • Antonio Zurita
  • Rocío Callejón
  • María Rodríguez-Plá


The study of cryptic species allows to describe and to understand biodiversity, and the evolutionary processes shaping it. Mites of the family Rhinonyssidae are permanent parasites of the nasal cavities of birds, currently including about 500 described species and 12 genera. Here, we tested the hypothesis that mites from five populations of the genus Tinaminyssus—three isolated from European turtle doves (Streptopelia turtur), and two from Eurasian collared doves (Streptopelia decaocto; Aves: Columbiformes)—are, in fact, two cryptic species inhabiting different hosts. First, we performed a morphometrical study on 16 traits. Then, we used the ITS1-5.8S rDNA-ITS2 nuclear region (ITS region), and a fragment of the mitochondrial cytochrome c-oxidase 1 (COI) to carry out phylogenetic and species delimitation analyses on Tinaminyssus species. Morphological analyses revealed a lack of biometric differentiation among Tinaminyssus populations from the two host species. However, molecular analyses indicated a high degree of genetic differentiation between populations of Tinaminyssus sp. from S. turtur and S. decaocto. Overall, results show that they can be considered as different cryptic species, suggesting a case of evolutionary stasis, likely because of the anatomical similarity between closely-related bird host species.


COI DNA barcoding ITS region Mites Molecular systematics Rhinonyssidae 



The present work was supported by a grant from the V Plan Propio de Investigación of the University of Seville, Spain. We thank to Centro Municipal Zoosanitario de Sevilla, and especially to Mr. Francisco Peña Fernández and Mr. Rafael Cuadrado Nieto for providing some of the samples. We also thank to Mr. Geoffrey Giddings for the critical reading of the manuscript.

Supplementary material

10493_2018_271_MOESM1_ESM.docx (151 kb)
Supplementary material 1 (DOCX 151 kb)


  1. Bell PJ (1996) The life history and transmission biology of Sternostoma tracheacolum Lawrence (Acari: Rhinonyssidae) associated with the Gouldian finch Erytrura gouldidae. Exp Appl Acarol 20:323–334CrossRefGoogle Scholar
  2. Brown SD, Collins RA, Boyer S et al (2012) Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol Ecol Resour 12:562–565CrossRefPubMedGoogle Scholar
  3. Butenko OM (1984) Rhinonyssid mites of non-passerine birds of the USSR. Academy of Sciences of USSR, MoscowGoogle Scholar
  4. Dabert J, Dabert M, Mironov SV (2001) Phylogeny of feather mite subfamily Avenzoariinae (Acari: Analgoidea: Avenzoariidae) inferred from combined analyses of molecular and morphological data. Mol Phylogenet Evol 20(1):124–135CrossRefPubMedGoogle Scholar
  5. de Rojas M, Mora MD, Ubeda JM, Cutillas C, Navajas M, Guevara DC (2001) Phylogenetic relationships in rhinonyssid mites (Acari: Rhinonyssidae) based on mitochondrial 16S rDNA sequences. Exp Appl Acarol 25:957–967CrossRefPubMedGoogle Scholar
  6. de Rojas M, Mora MD, Úbeda JM, Cutillas C, Navajas M, Guevara DC (2002) Phylogenetic relationships in rhinonyssid mites (Acari: Rhinonyssidae) based on ribosomal DNA sequences: insights for the discrimination of closely related species. Parasitol Res 88:675–681CrossRefPubMedGoogle Scholar
  7. de Rojas M, Úbeda JM, Cutillas C, Mora D, Ariza C, Guevara DC (2007) Utility of ITS1-58S-ITS2 and 16S mitochondrial DNA sequences for species identification and phylogenetic inference within the genus Rhinonyssus: the Rhinonyssus coniventris complex. Parasitol Res 100:1041–1104CrossRefPubMedGoogle Scholar
  8. de Rojas M, Riazzo C, Callejón R, Guevara D, Cutillas C (2012) Molecular study on three morphotypes of Demodex mites (Acarina: Demodicidae) from dogs. Parasitol Res 111(5):2165–2172CrossRefPubMedGoogle Scholar
  9. Dimov ID (2012) Epizootological study of spreading of the Rhinonyssid mites in nasal cavities of birds from Northwest Russia. Second international epizootiology days. Belgrade. pp 176–181Google Scholar
  10. Doña J, Díaz-Real J, Mironov S, Bazaga P, Serrano D, Jovani R (2015) DNA barcoding and minibarcoding as a powerful tool for feather mite studies. Mol Ecol Resour 15:1216–1225CrossRefPubMedGoogle Scholar
  11. Doña J, Sweet AD, Johnson KP, Serrano D, Jovani R (2017) Cophylogenetic analyses reveal extensive host-shift speciation in a highly specialized and host-specific symbiont system. Mol Phylogenet Evol 115:190–196CrossRefPubMedGoogle Scholar
  12. Fain A (1957) Essai de classification des Rhinonyssidae (Acari: Mesostigmata) avec description de deux genres nouveaux. Ann Parasitol 31:145–157Google Scholar
  13. Fain A (1962) Les rhinonyssides parasites des pigeons (Acarina: Mesostigmata). Rev Zool Bot Afr 65:305–324Google Scholar
  14. Fain A (1963) Le complexe ‘Rhinonyssus coniventris’ (Rhinonyssidae: Mesostigmata). Bull Ann Soc R Ent Belg 99(3):86–100Google Scholar
  15. Fain A (1994) Adaptation specificity and host parasite coevolution in mites (Acari). Int J Parasitol 24:1273–1283CrossRefPubMedGoogle Scholar
  16. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  17. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299PubMedGoogle Scholar
  18. George E (1961) The nasal mites of the genus Ptilonyssus (Acarina: Rhinonyssidae) occurring in some north American passeriform birds. Kans Entomol Soc 34:105–132Google Scholar
  19. Glowska E, Broda L, Gebhard CA, Dabert M (2016) A new quill mite Syringophiloidus plocei sp. nov. (Prostigmata: Syringophilidae) parasitizing ploceid birds (Passeriformes) in Gabon, a combined description using morphology and DNA barcoding. Acta Parasitol 61(3):562–566CrossRefPubMedGoogle Scholar
  20. Guindon S, Gascuel O (2003) A simple fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  21. Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321CrossRefGoogle Scholar
  22. Hebert PD, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:312CrossRefGoogle Scholar
  23. Hornok S, Estrada-Peña A, Kontschán J, Plantard O, Kunz B, Mihalca AD, Thabah A, Tomanović S (2015) High degree of mitochondrial gene heterogeneity in the bat tick species Ixodes vespertilionis, I. ariadnae and I. simplex from Eurasia. Parasit Vectors 8:457CrossRefPubMedPubMedCentralGoogle Scholar
  24. Huelsenbeck JP, Rannala B (1997) Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276:227–232CrossRefPubMedGoogle Scholar
  25. Kearse M, Moir R, Wilson A, Stones-Havas S et al (2012) Geneious basic: an integrated and extendable desktop software plat-form for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  27. Knee W (2008) Five new species of Rhinonyssidae (Mesostigmata) and one new species of Dermanyssus (Mesostigmata: Dermanyssidae) from birds of Alberta and Manitoba Canada. J Parasitol 94:348–374CrossRefPubMedGoogle Scholar
  28. Low VL, Tay ST, Kho KL, Koh FX et al (2015) Molecular characterization of the tick Rhipicephalus microplus in Malaysia: new insights into the cryptic diversity and distinct genetic assembalges throughout the world. Parasit Vectors 8:341CrossRefPubMedPubMedCentralGoogle Scholar
  29. Masters BC, Fan V, Ross HA (2011) Species delimitation—a Geneious plugin for the exploration of species boundaries. Mol Ecol Resour 11:154–157CrossRefPubMedGoogle Scholar
  30. Meier R, Shiyang K, Vaidya G, Ng PK (2006) DNA barcoding and taxonomy in Diptera: A tale of high intraspecific variability and low identification success. Syst Biol 55:715–728CrossRefPubMedGoogle Scholar
  31. Morelli M, Spicer GS (2007) Cospeciation between the nasal mite Ptilonyssus sairae (Acari: Rhinonyssidae) and its bird hosts. Syst Appl Acarol 12:179–188Google Scholar
  32. Navajas M, Boursot P (2003) Nuclear ribosomal DNA monophyly versus mitochondrial DNA polyphyly in two closely related mite species: the influence of life history and molecular drive. Proc R Soc Lond B Biol Sci 270(1):124–127CrossRefGoogle Scholar
  33. Navajas M, Lagnel J, Fauvel G, De Moraes G (1999) Sequence variation ribosomal internal transcribed spacers (ITS) in commercially important Phytoseiidae mites. Exp Appl Acarol 23:851–859CrossRefPubMedGoogle Scholar
  34. Navia D, Mendonça RS, Ferragut F, Miranda LC, Trincado RC, Michaux J, Navajas M (2013) Integration of DNA-based delimitation of species and morphology reveals cryptic diversity in Brevipalpus mites (Acari: Tenuipalpidae). Zool Scr 42(4):406–426CrossRefGoogle Scholar
  35. Pence DB (1973) The nasal mites of birds from Louisiana. IX. J Parasitol 59:881–892CrossRefGoogle Scholar
  36. Pence DB, Casto SD (1976) Studies on the variation and morphology of the Ptilonyssus ‘sairae’ complex (Acarina: Rhinonyssidae) from North American Passeriform birds. J Med Ent 13:71–95CrossRefGoogle Scholar
  37. Pérez-Ponce de León G, Poulin R (2016) Taxonomic distribution of cryptic diversity among metazoans: not so homogeneous after all. Biol Lett 12:20160371CrossRefPubMedPubMedCentralGoogle Scholar
  38. Porter JC, Strandtmann RW (1952) Nasal mites of the English sparrow. Tex J Sci 4:393–399Google Scholar
  39. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefPubMedGoogle Scholar
  40. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808CrossRefPubMedGoogle Scholar
  41. Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol Ecol 21:1864–1877CrossRefPubMedGoogle Scholar
  42. Radovsky FJ (1985) Evolution of mammalian mesostigmate mites. In: Kim KC (ed) Coevolution of parasitic arthropods and mammals. Wiley, New York, pp 441–504Google Scholar
  43. Rodríguez Braza MB, Guevara Benítez DC, Úbeda Ontiveros JM (1990) Ácaros del género Tinamimyssus Strandtman y Wharton, 1958, parásitos nasícolas de aves ciconiformes y columbiformes españolas: T. bubulci (Zumpt y Till, 1955) Pence, 1972 y T. melloi streptopeliae (Fain, 1962). Rev Iber Parasitol 50(1–2):73–80Google Scholar
  44. Ronquist F, Huelsenbeck JP (2003) MrBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  45. Ros VID, Breeuwer JAJ (2007) Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding. Exp Appl Acarol 42:239–262CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rosenberg NA (2007) Statistical tests for taxonomic distinctiveness from observations of monophyly. Evolution 61(2):317–323CrossRefPubMedGoogle Scholar
  47. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682CrossRefPubMedGoogle Scholar
  48. Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Annu Rev Entomol 55:421–438CrossRefPubMedGoogle Scholar
  49. Skoracka A, Magalhaes S, Rector BG, Kuczyński L (2015) Cryptic speciation in the Acari: a function of species lifestyles or our ability to separate species? Exp Appl Acarol 67:165–182CrossRefPubMedPubMedCentralGoogle Scholar
  50. Stoffel MA, Nakagawa S, Schielzeth H (2017) rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol Evol 8:1639–1644CrossRefGoogle Scholar
  51. Strandtmann RW (1948) The mesostigmatic nasal mites of birds I Two new genera from shore and marsh birds. J Parasitol 34:505–514CrossRefPubMedGoogle Scholar
  52. Struck TH, Feder JL, Bendiksby M, Birkeland S, Cerca J, Gusarov VI, Kistenich S, Larsson K-H, Liow LH, Nowak MD, Stedje B, Bachmann L, Dimitrov D (2018) Finding evolutionary processes hidden in cryptic species. Trends Ecol Evol 33(3):153–163CrossRefPubMedGoogle Scholar
  53. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  54. Xia X (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30:720–728CrossRefGoogle Scholar
  55. Zhao YE, Ma JX, Hu L, Wu LP, De Rojas M (2013) Discrimination between Demodex folliculorum (Acari: Demodicidae) isolates from China and Spain based on mitochondrial COI sequences. J Zhejiang Univ Sci B 14(9):829–836CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zhao YE, Cheng J, Hu L, Ma JX (2014) Molecular identification and phylogenetic study of Demodex caprae. Parasitol Res 113(10):3601–3608CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Microbiology and Parasitology, Faculty of PharmacyUniversity of SevillaSevilleSpain
  2. 2.Department of Evolutionary EcologyEstación Biológica de Doñana (EBD-CSIC)SevilleSpain
  3. 3.Illinois Natural History Survey, Prairie Research InstituteUniversity of Illinois at Urbana-ChampaignChampaignUSA
  4. 4.Department of Human AnatomyState Pediatric Medical UniversitySt. PetersburgRussia

Personalised recommendations