Advertisement

Trajectory similarity clustering based on multi-feature distance measurement

  • Qingying Yu
  • Yonglong LuoEmail author
  • Chuanming Chen
  • Shigang Chen
Article
  • 34 Downloads

Abstract

With the development of GPS-enabled devices, wireless communication and storage technologies, trajectories representing the mobility of moving objects are accumulated at an unprecedented pace. They contain a large amount of temporal and spatial semantic information. A great deal of valuable information can be obtained by mining and analyzing the trajectory dataset. Trajectory clustering is one of the simplest and most powerful methods to obtain knowledge from trajectory data, which is based on the similarity measure between trajectories. The existing similarity measurement methods cannot fully utilize the specific features of trajectory itself when measuring the distance between trajectories. In this paper, an enhanced trajectory model is proposed and a new trajectory clustering algorithm is presented based on multi-feature trajectory similarity measure, which can maximize the similarity of trajectories in the same cluster, and can be used to better serve for applications including traffic monitoring and road congestion prediction. Both the intuitive visualization presentation and the experimental results on synthetic and real trajectory datasets show that, compared to existing methods, the proposed approach improves the accuracy and efficiency of trajectory clustering.

Keywords

Trajectory Similarity measure between trajectories Trajectory features Trajectory similarity clustering Trajectory centers 

Notes

Acknowledgements

The authors would like to thank the reviewers for their useful comments and suggestions for this paper. This work was supported by the National Natural Science Foundation of China (61702010, 61672039), the Key Program for University Top Talents of Anhui Province (gxbjZD2016011), the University Natural Science Research Program of Anhui Province (KJ2017A327), and the Science and Technology Project of Wuhu City (2016cxy04).

References

  1. 1.
    Zheng Y, Xie X, Ma W-Y (2010) GeoLife: a collaborative social networking service among user, location and trajectory[J]. IEEE Data Eng Bullet 33(2):32–39Google Scholar
  2. 2.
    Hu W, Li X, Tian G et al (2013) An incremental DPMM-based method for trajectory clustering, modeling, and retrieval[J]. IEEE Trans Pattern Anal Mach Intell 35(5):1051–1065CrossRefGoogle Scholar
  3. 3.
    Luo W, Tan H, Chen L et al (2013) Finding time period-based most frequent path in big trajectory data[C]. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 713–724Google Scholar
  4. 4.
    Zheng Y. (2015) Trajectory data mining: An overview[J]. ACM Trans Intell Syst Technol (TIST) 6(3):29Google Scholar
  5. 5.
    Lv M, Chen L, Xu Z et al (2016) The discovery of personally semantic places based on trajectory data mining[J]. Neurocomputing 173:1142–1153CrossRefGoogle Scholar
  6. 6.
    Zheng K, Zheng Y, Yuan NJ et al (2014) Online discovery of gathering patterns over trajectories[J]. IEEE Trans Knowl Data Eng 26(8):1974–1988CrossRefGoogle Scholar
  7. 7.
    Sanchez I, Aye ZMM, Rubinstein BIP et al (2016) Fast trajectory clustering using hashing methods[C]. In: Proceedings of the IEEE international joint conference on neural networks (IJCNN), pp 3689–3696Google Scholar
  8. 8.
    Han B, Liu L, Omiecinski E (2015) Road-network aware trajectory clustering: integrating locality, flow, and density[J]. IEEE Trans Mob Comput 14(2):416–429CrossRefGoogle Scholar
  9. 9.
    Zhao P, Qin K, Ye X et al (2016) A trajectory clustering approach based on decision graph and data field for detecting hotspots[J]. Int J Geogr Inf Sci 31(7):1–27Google Scholar
  10. 10.
    Nikolaou TG, Kolokotsa DS, Stavrakakis GS et al (2012) On the application of clustering techniques for office buildings’ energy and thermal comfort classification[J]. IEEE Trans Smart Grid 3(4):2196–2210CrossRefGoogle Scholar
  11. 11.
    Yuan G, Sun P, Zhao J et al (2017) A review of moving object trajectory clustering algorithms[J]. Artif Intell Rev 47:123–144CrossRefGoogle Scholar
  12. 12.
    Lee J -G, Han J, Whang K-Y (2007) Trajectory clustering: A partition-and-group framework[C]. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 593–604Google Scholar
  13. 13.
    Pelekis N, Kopanakis I, Kotsifakos EE et al (2011) Clustering uncertain trajectories[J]. Knowl Inf Syst 28(1):117–147CrossRefGoogle Scholar
  14. 14.
    Besse PC, Guillouet B, Loubes JM et al (2017) Destination prediction by trajectory distribution based model[J]. IEEE Transactions on Intelligent Transportation Systems:1–12Google Scholar
  15. 15.
    Lloyd SP (1982) Least squares quanization in PCM[J]. IEEE Trans Inf Theory 28(2):129–137CrossRefGoogle Scholar
  16. 16.
    Ester M, kriegel HP, Sander J et al (1996) A density-Based algorithm for discovering clusters in large spatial databases with noise[C]. In: Proceedings of the 2nd international conference on knowledge discovery and data mining, pp 226–231Google Scholar
  17. 17.
    Zhang T, Ramakrishnan R, Livny M (1996) BIRCH An efficient data clustering databases method for very large databases[C]. Proc ACM SIGMOD Int Conf Manag Data 1:103–114CrossRefGoogle Scholar
  18. 18.
    Ankerst M, Breunig MM, Kriegel H-P et al (1999) Optics: ordering points to identify the clustering structure[C]. ACM Sigmod Record 28(2):49–60CrossRefGoogle Scholar
  19. 19.
    Pravilovic S, Appice A, Lanza A et al (2014) Wind power forecasting using time series cluster analysis[G]. In: Discovery science. Springer International Publishing, pp 276–287Google Scholar
  20. 20.
    Laurinec P, LóDerer M, Vrablecová P et al (2017) Adaptive time series forecasting of energy consumption using optimized cluster analysis[C]. In: Proceedings of the IEEE international conference on data mining workshops, pp 398–405Google Scholar
  21. 21.
    Wei J, Yu H, Chen JH et al (2011) Parallel clustering for visualizing large scientific line data[C]. In: Proceedings of the 1st IEEE symposium on large-scale data analysis and visualization (LDAV), pp 47–55Google Scholar
  22. 22.
    Atev S, Miller G, Papanikolopoulos NP (2010) Clustering of vehicle trajectories[J]. IEEE Trans Intell Transp Syst 11(3):647–657CrossRefGoogle Scholar
  23. 23.
    Choong M Y, Chin R K Y, Yeo KB et al (2014) Trajectory clustering for behavioral pattern learning in transportation surveillance[C]. In: Proceedings of the 4th IEEE international conference on artificial intelligence with applications in engineering and technology(ICAIET), pp 199–203Google Scholar
  24. 24.
    Ferreira N, Klosowski JT, Scheidegger CE et al (2013) Vector field k-means: clustering trajectories by fitting multiple vector fields[C]. Eurographics Conf Vis (EuroVis) 32(3pt2):201–210Google Scholar
  25. 25.
    Su H, Zheng K, Huang J et al (2015) Calibrating trajectory data for spatio-temporal similarity analysis[J]. VLDB J 24(1):93– 116CrossRefGoogle Scholar
  26. 26.
    Lin B, Su J (2008) One way distance: for shape based similarity search of moving object trajectories[J]. Geoinformatica 12(2):117–142CrossRefGoogle Scholar
  27. 27.
    Morris B, Trivedi M (2009) Learning trajectory patterns by clustering: experimental studies and comparative evaluation[C]. In: Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR), pp 312–319Google Scholar
  28. 28.
    Domingo-Ferrer J, Trujillo-Rasua R (2012) Microaggregation- and permutation-based anonymization of movement data[J]. Inf Sci 208:55–80CrossRefGoogle Scholar
  29. 29.
    Wang C, Yang J, Zhang J (2015) Privacy preserving algorithm based on trajectory location and shape similarity[J]. J Commun 36(2):144–157Google Scholar
  30. 30.
    Gudmundsson J, Valladares N (2015) A GPU approach to subtrajectory clustering using the fréchet distance[J]. IEEE Trans Parallel Distrib Syst 26(4):924–937CrossRefGoogle Scholar
  31. 31.
    Basse P, Guillouet B, Loubes J -M et al (2015) Review and perspective for distance based trajectory clustering[J]. Comput Sci 47(2):169–179Google Scholar
  32. 32.
    Keogh E, Pazzani M (2001) Derivative dynamic time warping[C]. In: Proceedings of the SIAM international conference on data mining, pp 1–11Google Scholar
  33. 33.
    Keogh E, Ratanamahatana CA (2005) Exact indexing of dynamic time warping[J]. Knowl Inf Syst 7 (3):358–386CrossRefGoogle Scholar
  34. 34.
    Zhang D, Lee K, Lee I (2018) Hierarchical trajectory clustering for spatio-temporal periodic pattern mining[J]. Expert Syst Appl 92:1–11CrossRefGoogle Scholar
  35. 35.
    Dominigo-Ferrer J, Sramka M, Trujillo-Rasua R (2010) Privacy-preserving publication of trajectories using microaggregation[C]. In: Proceedings of the 3rd ACM SIGSPATIAL international workshop on security and privacy in GIS and LBS - SPRINGL’10, pp 26–33Google Scholar
  36. 36.
    Brinkhoff T (2002) A framework for generating network-based moving objects[J]. Geoinformatica 6(2):153–180CrossRefGoogle Scholar
  37. 37.
    Piorkowski M, Sarafijanovic-Djukic N, Grossglauser M (2009) CRAWDAD dataset epfl/mobility (v. 2009-02-24)[EB/OL].  https://doi.org/10.15783/C7J010
  38. 38.
    Piorkowski M, Sarafijanovic-Djukic N, Grossglauser M (2009) A parsimonious model of mobile partitioned networks with clustering[C]. In: Proceedings of the 1st international conference on communication systems and NETworks, pp 1–10Google Scholar
  39. 39.
    Laxhammar R, Falkman G (2014) Online learning and sequential anomaly detection in trajectories[J]. IEEE Trans Pattern Anal Mach Intell 36(6):1158–1173CrossRefGoogle Scholar
  40. 40.
    Han J, Kamber M, Pei J (2013) Data mining: concepts and techniques[M]. Morgan Kaufmann, San FranciscozbMATHGoogle Scholar
  41. 41.
    Amorim RCD, Hennig C (2015) Recovering the number of clusters in data sets with noise features using feature rescaling factors[J]. Inf Sci 324:126–145MathSciNetCrossRefGoogle Scholar
  42. 42.
    Xie J, Gao H, Xie W et al (2016) Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors[J]. Inf Sci 354(C):19–40CrossRefGoogle Scholar
  43. 43.
    Vinh NX, Epps J, Bailey J (2009) Information theoretic measures for clusterings comparison: is a correction for chance necessary?[C]. In Proceedings of the 26th ACM international conference on machine learning, pp 1073–1080Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Qingying Yu
    • 1
    • 2
    • 3
  • Yonglong Luo
    • 1
    • 2
    • 3
    Email author
  • Chuanming Chen
    • 2
    • 3
  • Shigang Chen
    • 4
  1. 1.School of Geography and TourismAnhui Normal UniversityWuhuChina
  2. 2.School of Computer and InformationAnhui Normal UniversityWuhuChina
  3. 3.Anhui Provincial Key Laboratory of Network and Information SecurityWuhuChina
  4. 4.Department of Computer, Information Science, EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations