Advertisement

Relative Technical Efficiency Assessment of Mental Health Services: A Systematic Review

  • Carlos R. García-Alonso
  • Nerea AlmedaEmail author
  • José Alberto Salinas-Pérez
  • Mencía R. Gutiérrez-Colosía
  • Luis Salvador-Carulla
Original Article
  • 99 Downloads

Abstract

The current prevalence of mental disorders demands improved ways of the management and planning of mental health (MH) services. Relative technical efficiency (RTE) is an appropriate and robust indicator to support decision-making in health care, but it has not been applied significantly in MH. This article systematically reviews the empirical background of RTE in MH services following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Finally, 13 studies were included, and the findings provide new standard classifications of RTE variables, efficiency determinants and strategies to improve MH management and planning.

Keywords

Systematic review Relative technical efficiency Mental health service Mental health care DEA 

Notes

Acknowledgements

We would like to thank Carlos Pereira, José Juan Uriarte, Enrique Pinilla (Mental Health Network of Bizkaia), Álvaro Iruin and Andrea Gabilondo (Mental Health Network of Gipuzkoa) for the support.

Funding

This study was funded by the Carlos III Health Institute (Ministry of Health of Spain) (Project PI15/01986) and co-funded by FEDER funds.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

This study does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

This study does not contain any studies with human participants.

References

References marked with an asterisk indicate studies included in the systematic review

  1. *Alexander, J. A., Wheeler, J. R. C., Nahra, T. A., & Lemak, C. H. (1998). Managed care and technical efficiency in outpatient substance abuse treatment units. Journal of Behavioral Health Services and Research, 25(4), 377–396.  https://doi.org/10.1007/BF02287509.
  2. *Blank, J. L. T., & Valdmanis, V. G. (2005). A modified three-stage data envelopment analysis. The European Journal of Health Economics, 6(1), 65–72.  https://doi.org/10.1007/s10198-004-0260-3.
  3. *Corredoira, R. A., Chilingerian, J. A., & Kimberly, J. R. (2011). Analyzing performance in addiction treatment: An application of data envelopment analysis to the state of Maryland system. Journal of Substance Abuse Treatment, 41(1), 1–13.  https://doi.org/10.1016/j.jsat.2011.01.006.
  4. *Gibert, K., García-Alonso, C., & Salvador-Carulla, L. (2010). Integrating clinicians, knowledge and data: Expert-based cooperative analysis in healthcare decision support. Health Research Policy and Systems, 8, 28.  https://doi.org/10.1186/1478-4505-8-28.
  5. *Halsteinli, V., Kittelsen, S. A. C., & Magnussen, J. (2001). Scale, efficiency and organization in Norwegian psychiatric outpatient clinics for children. The Journal of Mental Health Policy and Economics, 4(2), 79–90.Google Scholar
  6. *Kontodimopoulos, N., Bellali, T., Labiris, G., & Niakas, D. (2006). Investigating sources of inefficiency in residential mental health facilities. Journal of Medical Systems, 30(3), 169–176.Google Scholar
  7. *Moran, V., & Jacobs, R. (2013). An international comparison of efficiency of inpatient mental health care systems. Health Policy, 112(1–2), 88–99.  https://doi.org/10.1016/j.healthpol.2013.06.011.
  8. *Nahra, T. A., Mendez, D., & Alexander, J. A. (2009). Employing super-efficiency analysis as an alternative to DEA: An application in outpatient substance abuse treatment. European Journal of Operational Research, 196(3), 1097–1106.  https://doi.org/10.1016/j.ejor.2008.04.022.
  9. *Ozcan, Y. A., McCue, M. J., & Okasha, A. A. (1996). Measuring the technical efficiency of psychiatric hospitals. Journal of Medical Systems, 20(3), 141–150.  https://doi.org/10.1007/BF02281992.
  10. *Salvador-Carulla, L., García-Alonso, C. R., González-Caballero, J. L., & Garrido-Cumbrera, M. (2007). Use of an operational model of community care to assess technical efficiency and benchmarking of small mental health areas in Spain. The Journal of Mental Health Policy and Economics, 10(2), 87–100.Google Scholar
  11. *Torres-Jiménez, M., García-Alonso, C. R., Salvador-Carulla, L., & Fernández-Rodríguez, V. (2015). Evaluation of system efficiency using the Monte Carlo DEA: The case of small health areas. European Journal of Operational Research, 242(2), 525–535.  https://doi.org/10.1016/j.ejor.2014.10.019.
  12. *Tyler, L. H., Ozcan, Y. A., & Wogen, S. E. (1995). Mental health case management and technical efficiency. Journal of Medical Systems, 19(5), 413–423.Google Scholar
  13. *Yeh, J., White, K. R., & Ozcan, Y. A. (1997). Efficiency evaluation of community-based youth services in Virginia. Community Mental Health Journal, 33(6), 487–499.  https://doi.org/10.1023/A:1025096502578.
  14. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders. Arlington, TX: American Psychiatric Association.  https://doi.org/10.1176/appi.books.9780890425596.744053.CrossRefGoogle Scholar
  15. Bahari, A. R., & Emrouznejad, A. (2014). Influential DMUs and outlier detection in data envelopment analysis with an application to health care. Annals of Operations Research, 223(1), 95–108.  https://doi.org/10.1007/s10479-014-1604-8.CrossRefGoogle Scholar
  16. Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078–1092. http://econpapers.repec.org/RePEc:inm:ormnsc:v:30:y:1984:i:9:p:1078-1092.
  17. Bjorkgren, M. A., Hakkinen, U., & Linna, M. (2001). Measuring efficiency of long-term care units in Finland. Health Care Management Science, 4(3), 193–200.CrossRefGoogle Scholar
  18. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444. http://econpapers.repec.org/RePEc:eee:ejores:v:2:y:1978:i:6:p:429-444.
  19. Dulal, R. (2017). Technical efficiency of nursing homes: Do five-star quality ratings matter? Health Care Management Science.  https://doi.org/10.1007/s10729-017-9392-8.Google Scholar
  20. Emrouznejad, A., Parker, B. R., & Tavares, G. (2008). Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA. Socio-economic Planning Sciences, 42(3), 151–157.  https://doi.org/10.1016/j.seps.2007.07.002.CrossRefGoogle Scholar
  21. Emrouznejad, A., & Yang, G. (2017). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-economic Planning Sciences.  https://doi.org/10.1016/j.seps.2017.01.008.Google Scholar
  22. Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society. Series A (General).  https://doi.org/10.2307/2343100.Google Scholar
  23. Ferrier, G. D., & Valdmanis, V. G. (2002). Exploring psychiatric hospital performance using data envelopment analysis and cluster analysis. Journal d’Economie Medicale, 20(3–4), 143–153. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0036588661&partnerID=40&md5=4dfe8cbc35afb2b4514aab556a3d6e56.
  24. Gattoufi, S., Oral, M., & Reisman, A. (2004). A taxonomy for data envelopment analysis. Socio-economic Planning Sciences, 38(2–3), 141–158.  https://doi.org/10.1016/S0038-0121(03)00022-3.CrossRefGoogle Scholar
  25. Hatami-Marbini, A., Emrouznejad, A., & Tavana, M. (2011). A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making. European Journal of Operational Research, 214(3), 457–472.  https://doi.org/10.1016/j.ejor.2011.02.001.CrossRefGoogle Scholar
  26. Hollingsworth, B. (2008). The measurement of efficiency and productivity of health care delivery. Health Economics, 17(10), 1107–1128.  https://doi.org/10.1002/hec.1391.CrossRefGoogle Scholar
  27. Hollingsworth, B., Dawson, P. J., & Maniadakis, N. (1999). Efficiency measurement of health care: A review of non-parametric methods and applications. Health Care Management Science, 2(3), 161–172.CrossRefGoogle Scholar
  28. Hussey, P. S., de Vries, H., Romley, J., Wang, M. C., Chen, S. S., Shekelle, P. G., & McGlynn, E. A. (2009). A systematic review of health care efficiency measures. Health Services Research, 44(3), 784–805.  https://doi.org/10.1111/j.1475-6773.2008.00942.x.CrossRefGoogle Scholar
  29. Johnson, S., & Kuhlmann, R. (2000). The European Service Mapping Schedule (ESMS): Development of an instrument for the description and classification of mental health services. Acta psychiatrica Scandinavica. Supplementum, 405, 14–23.CrossRefGoogle Scholar
  30. Kiadaliri, A. A., Jafari, M., & Gerdtham, U.-G. (2013). Frontier-based techniques in measuring hospital efficiency in Iran: A systematic review and meta-regression analysis. BMC Health Services Research, 13(1), 312.  https://doi.org/10.1186/1472-6963-13-312.CrossRefGoogle Scholar
  31. Killaspy, H., White, S., Dowling, S., Krotofil, J., McPherson, P., Sandhu, S., et al. (2016). Adaptation of the Quality Indicator for Rehabilitative Care (QuIRC) for use in mental health supported accommodation services (QuIRC-SA). BMC Psychiatry, 16(1), 101.  https://doi.org/10.1186/s12888-016-0799-4.CrossRefGoogle Scholar
  32. Kirigia, J. M., & Asbu, E. Z. (2013). Technical and scale efficiency of public community hospitals in Eritrea: An exploratory study. Health Economics Review, 3(1), 6.  https://doi.org/10.1186/2191-1991-3-6.CrossRefGoogle Scholar
  33. Leleu, H., Al-Amin, M., Rosko, M., & Valdmanis, V. G. (2017). A robust analysis of hospital efficiency and factors affecting variability. Health Services Management Research.  https://doi.org/10.1177/0951484817730537.Google Scholar
  34. Lin, J. R., Chen, C. Y., & Peng, T. K. (2017). Study of the relevance of the quality of care, operating efficiency and inefficient quality competition of senior care facilities. International Journal of Environmental Research and Public Health.  https://doi.org/10.3390/ijerph14091047.Google Scholar
  35. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264–269.CrossRefGoogle Scholar
  36. Montagni, I., Salvador-Carulla, L., Mcdaid, D., Straßmayr, C., Endel, F., Näätänen, P., et al. (2017). The REFINEMENT Glossary of terms: An international terminology for mental health systems assessment. Administration and Policy in Mental Health and Mental Health Services Research.  https://doi.org/10.1007/s10488-017-0826-x.Google Scholar
  37. Oxman, A. D., Lavis, J. N., Lewin, S., & Fretheim, A. (2009). SUPPORT Tools for evidence-informed health Policymaking (STP)1: What is evidence-informed policymaking? Health Research Policy and Systems, 7, 1–7.  https://doi.org/10.1186/1478-This.CrossRefGoogle Scholar
  38. Pelone, F., Kringos, D. S., Romaniello, A., Archibugi, M., Salsiri, C., & Ricciardi, W. (2015). Primary care efficiency measurement using data envelopment analysis: A systematic review. Journal of Medical Systems.  https://doi.org/10.1007/s10916-014-0156-4.Google Scholar
  39. Priebe, S., Saidi, M., Want, A., Mangalore, R., & Knapp, M. (2009). Housing services for people with mental disorders in England: Patient characteristics, care provision and costs. Social Psychiatry and Psychiatric Epidemiology, 44(10), 805–814.  https://doi.org/10.1007/s00127-009-0001-0.CrossRefGoogle Scholar
  40. References marked with an asterisk indicate studies included in the systematic review.Google Scholar
  41. Roh, C.-Y., Moon, M. J., & Jung, K. (2013). Efficiency disparities among community hospitals in Tennessee: Do size, location, ownership, and network matter? Journal of Health Care for the Poor and Underserved, 24(4), 1816–1833.  https://doi.org/10.1353/hpu.2013.0175.CrossRefGoogle Scholar
  42. Salvador-Carulla, L., Alvarez-Galvez, J., Romero, C., Gutiérrez-Colosía, M. R., Weber, G., McDaid, D., et al. (2013). Evaluation of an integrated system for classification, assessment and comparison of services for long-term care in Europe: The eDESDE-LTC study. BMC Health Services Research, 13(1), 218.  https://doi.org/10.1186/1472-6963-13-218.CrossRefGoogle Scholar
  43. Seiford, L. M. (1996). Data envelopment analysis: The evolution of the state of the art (1978–1995). Journal of Productivity Analysis, 7(2), 99–137.  https://doi.org/10.1007/BF00157037.CrossRefGoogle Scholar
  44. Seiford, L. M. (1997). A bibliography for Data Envelopment Analysis (1978–1996). Annals of Operations Research, 73, 393–438.  https://doi.org/10.1023/A:1018949800069.CrossRefGoogle Scholar
  45. Sikka, V., Luke, R. D., & Ozcan, Y. A. (2009). The efficiency of hospital-based clusters: Evaluating system performance using data envelopment analysis. Health Care Management Review, 34(3), 251–261.  https://doi.org/10.1097/HMR.0b013e3181a16ba7.CrossRefGoogle Scholar
  46. Sun, J., & Luo, H. (2017). Evaluation on equality and efficiency of health resources allocation and health services utilization in China. International Journal for Equity in Health, 16(1), 127.  https://doi.org/10.1186/s12939-017-0614-y.CrossRefGoogle Scholar
  47. Takundwa, R., Jowett, S., McLeod, H., & Peñaloza-Ramos, M. C. (2017). The effects of environmental factors on the efficiency of clinical commissioning groups in England: A data envelopment analysis. Journal of Medical Systems, 41(6), 1–7.  https://doi.org/10.1007/s10916-017-0740-5.CrossRefGoogle Scholar
  48. Tavares, G. (2002). A bibliography of Data Envelopment Analysis (1978–2001). RRR (Rutgers Research Report, p 186). http://rutcor.rutgers.edu/2002.html, http://rutcor.rutgers.edu/pub/rrr/reports2002/1_2002.pdf.
  49. Thornicroft, G., & Tansella, M. (2009). Better mental health care (Cambridge edition). Cambridge University Press.Google Scholar
  50. Valdmanis, V. G., Rosko, M. D., Leleu, H., & Mukamel, D. B. (2017). Assessing overall, technical, and scale efficiency among home health care agencies. Health Care Management Science, 20(2), 265–275.  https://doi.org/10.1007/s10729-015-9351-1.CrossRefGoogle Scholar
  51. van Ineveld, M., van Oostrum, J., Vermeulen, R., Steenhoek, A., & van de Klundert, J. (2016). Productivity and quality of Dutch hospitals during system reform. Health Care Management Science, 19(3), 279–290.  https://doi.org/10.1007/s10729-015-9321-7.CrossRefGoogle Scholar
  52. World Health Organization. (2005). Mental health policy, plans and programmes. Mental health policy and service guidance packages (pp 1–122). http://www.who.int/mental_health/policy/services/2_policy plans prog_WEB_07.pdf.
  53. World Health Organization. (2010). ATLAS on Substance Use (2010)Resources for the prevention and treatment of substance use disorders. Chapter 2. Health Services. France. http://www.who.int/substance_abuse/activities/msbatlaschtwo.pdf?ua=1.
  54. World Health Organization. (2017). Mental disorders. http://www.who.int/mediacentre/factsheets/fs396/en/.
  55. World Health Organization. (2018). The International Classification of Diseases 11th Revision. Retrieved October 8, 2018, from https://icd.who.int/.
  56. Worthington, A. C. (2004). Frontier efficiency measurement in health care: A review of empirical techniques and selected applications. Medical Care Research and Review, 61(2), 135–170.  https://doi.org/10.1177/1077558704263796.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Quantitative MethodsUniversidad Loyola AndalucíaSevilleSpain
  2. 2.Department of PsychologyUniversidad Loyola AndalucíaSevilleSpain
  3. 3.Research School of Population Health, ANU College of Health and MedicineAustralian National UniversityCanberraAustralia

Personalised recommendations