Advertisement

Intrinsic Schreier Split Extensions

  • Andrea Montoli
  • Diana RodeloEmail author
  • Tim Van der Linden
Article

Abstract

In the context of regular unital categories we introduce an intrinsic version of the notion of a Schreier split epimorphism, originally considered for monoids. We show that such split epimorphisms satisfy the same homological properties as Schreier split epimorphisms of monoids do. This gives rise to new examples of \({\mathcal {S}}\)-protomodular categories, and allows us to better understand the homological behaviour of monoids from a categorical perspective.

Keywords

Fibration of points Jointly extremal-epimorphic pair Regular category Unital category Protomodular category Monoid Jónsson–Tarski variety 

Mathematics Subject Classification

20M32 20J15 18E99 03C05 08C05 

Notes

References

  1. 1.
    Borceux, F., Bourn, D.: Mal’cev, Protomodular, Homological and Semi-Abelian Categories. Mathematics and Its Applications, vol. 566. Kluwer Academic Publisher, Dordrecht (2004)CrossRefGoogle Scholar
  2. 2.
    Bourn, D.: Normalization equivalence, kernel equivalence and affine categories. In: Carboni, A., Pedicchio, M.C.,Rosolini, G. (eds.) Category Theory: Proceedings of the International Conference Held in Como 1990. Lecture Notes in Mathematics, vol. 1488, pp. 43–62. Springer (1991)Google Scholar
  3. 3.
    Bourn, D.: Mal’cev categories and fibration of pointed objects. Appl. Categ. Struct. 4, 307–327 (1996)CrossRefGoogle Scholar
  4. 4.
    Bourn, D.: On the monad of internal groupoids. Theory Appl. Categ. 28(5), 150–165 (2013)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bourn, D., Janelidze, G.: Characterization of protomodular varieties of universal algebras. Theory Appl. Categ. 11(6), 143–147 (2003)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bourn, D., Janelidze, Z.: Approximate Mal’tsev operations. Theory Appl. Categ. 21(8), 152–171 (2008)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bourn, D., Janelidze, Z.: Pointed protomodularity via natural imaginary subtractions. J. Pure Appl. Algebra 213, 1835–1851 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bourn, D., Janelidze, Z.: Subtractive categories and extended subtractions. Appl. Categ. Struct. 17, 317–343 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bourn, D., Martins-Ferreira, N., Montoli, A., Sobral, M.: Schreier split epimorphisms in monoids and in semirings, Textos de Matemática (Série B), vol. 45, Departamento de Matemática da Universidade de Coimbra (2013)Google Scholar
  10. 10.
    Bourn, D., Martins-Ferreira, N., Montoli, A., Sobral, M.: Schreier split epimorphisms between monoids. Semigroup Forum 88, 739–752 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bourn, D., Martins-Ferreira, N., Montoli, A., Sobral, M.: Monoids and pointed \(S\)-protomodular categories. Homol Homotopy Appl. 18(1), 151–172 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bourn, D., Montoli, A.: The \(3 \times 3\) lemma in the \(\Sigma \)-Mal’tsev and \(\Sigma \)-protomodular settings. Applications to monoids and quandles. Homol Homotopy Appl. 21(2), 305–332 (2019)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bourn, D., Rodelo, D.: Cohomology without projectives. Cah. Topol. Géom. Differ. Catég. XLVIII(2), 104–153 (2007)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Johnstone, P.T.: A note on the semiabelian variety of Heyting semilattices. In: Janelidze, G., Pareigis, B., Tholen, W. (eds.) Galois Theory, Hopf Algebras, and Semiabelian Categories. Fields Institute Communications, vol. 43, pp. 317–318. American Mathematical Society (2004) Google Scholar
  15. 15.
    Jónsson, B., Tarski, A.: Direct Decompositions of Finite Algebraic Systems. Notre Dame Mathematical Lectures. University of Notre Dame, Notre Dame (1947) zbMATHGoogle Scholar
  16. 16.
    Martins-Ferreira, N., Montoli, A.: On the “Smith is Huq” condition in \(S\)-protomodular categories. Appl. Categ. Struct. 25, 59–75 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Martins-Ferreira, N., Montoli, A., Sobral, M.: Semidirect products and crossed modules in monoids with operations. J. Pure Appl. Algebra 217, 334–347 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Martins-Ferreira, N., Montoli, A., Sobral, M.: Semidirect products and split short five lemma in normal categories. Appl. Categ. Struct. 22, 687–697 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Montoli, A., Rodelo, D., Van der Linden, T.: Two characterisations of groups amongst monoids. J. Pure Appl. Algebra 222, 747–777 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Montoli, A., Rodelo, D., Van der Linden, T.: Intrinsic Schreier special objects, in preparation (2019) Google Scholar
  21. 21.
    Patchkoria, A.: Cohomology of monoids with coefficients in semimodules. Bull. Acad. Sci. Georgian SSR 86, 545–548 (1977)MathSciNetGoogle Scholar
  22. 22.
    Patchkoria, A.: Extensions of semimodules by monoids and their cohomological characterization. Bull. Acad. Sci. Georgian SSR 86, 21–24 (1977)MathSciNetGoogle Scholar
  23. 23.
    Patchkoria, A.: Crossed semimodules and Schreier internal categories in the category of monoids. Georgian Math. J. 5(6), 575–581 (1998)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Rédei, L.: Die Verallgemeinerung der Schreierschen Erweiterungstheorie. Acta Sci. Math. (Szeged) 14, 252–273 (1952)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Rodelo, D., Van der Linden, T.: Approximate Hagemann–Mitschke co-operations. Appl. Categ. Struct. 22, 1009–1020 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica “Federigo Enriques”Università degli Studi di MilanoMilanoItaly
  2. 2.Departamento de Matemática, Faculdade de Ciências e TecnologiaUniversidade do AlgarveFaroPortugal
  3. 3.CMUC, Department of MathematicsUniversity of CoimbraCoimbraPortugal
  4. 4.Institut de Recherche en Mathématique et PhysiqueUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations