Advertisement

Compact Hausdorff Spaces with Relations and Gleason Spaces

  • G. BezhanishviliEmail author
  • D. Gabelaia
  • J. Harding
  • M. Jibladze
Article
  • 1 Downloads

Abstract

We consider an alternate form of the equivalence between the category of compact Hausdorff spaces and continuous functions and a category formed from Gleason spaces and certain relations. This equivalence arises from the study of the projective cover of a compact Hausdorff space. This line leads us to consider the category of compact Hausdorff spaces with closed relations, and the corresponding subcategories with continuous and interior relations. Various equivalences of these categories are given extending known equivalences of the category of compact Hausdorff spaces and continuous functions with compact regular frames, de Vries algebras, and also with a category of Gleason spaces that we introduce. Study of categories of compact Hausdorff spaces with relations is of interest as a general setting to consider Gleason spaces, for connections to modal logic, as well as for the intrinsic interest in these categories.

Keywords

Compact Hausdorff space Gleason cover Closed relation Continuous relation Interior relation Compact regular frame De Vries algebra 

Mathematics Subject Classification

54D30 54G05 54E05 06D22 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank the referee for pointing out [19] to us, as well as for a number of useful suggestions, particularly involving adjunctions in order enriched categories.

References

  1. 1.
    Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LiCS-04), pp. 415–425. IEEE Computer Society, New York (2004) (Extended version at arXiv:quant-ph/0402130)
  2. 2.
    Banaschewski, B., Mulvey, C.: Stone-Čech compactification of locales I. Houston J. Math. 6(3), 301–312 (1980)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bezhanishvili, G.: Stone duality and Gleason covers through de Vries duality. Topol. Appl. 157(6), 1064–1080 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bezhanishvili, G.: De Vries algebras and compact regular frames. Appl. Categ. Struct. 20(6), 569–582 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bezhanishvili, G., Bezhanishvili, N., Sourabh, S., Venema, Y.: Irreducible equivalence relations, Gleason spaces, and de Vries duality. Appl. Categ. Struct. 25(3), 381–401 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bezhanishvili, G., Bezhanishvili, N., Harding, J.: Modal compact Hausdorff spaces. J. Logic Comput. 25(1), 1–35 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bezhanishvili, G., Bezhanishvili, N., Harding, J.: Modal operators on compact regular frames and de Vries algebras. Appl. Categ. Struct. 23(3), 365–379 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Carboni, A., Walters, R.: Cartesian bicategories I. J. Pure Appl. Algebra 49, 11–32 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    de Vries, H.: Compact spaces and compactifications. An algebraic approach, Ph.D. thesis, University of Amsterdam, (1962)Google Scholar
  10. 10.
    Freyd, P., Scedrov, A.: Categories, Allegories. North-Holland Mathematical Library, Amsterdam (1990)zbMATHGoogle Scholar
  11. 11.
    Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: A Compendium of Continuous Lattices. Springer, Berlin (1980)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Gleason, A.: Projective topological spaces. Ill. J. Math. 2, 482–489 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Harding, J.: A link between quantum logic and categorical quantum mechanics. Int. J. Theoret. Phys. 48, 769–802 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Heunen, C., Jacobs, B.: Quantum logic in dagger kernel categories. Electron. Notes Theoret. Comput. Sci. 270, 79–103 (2011)CrossRefzbMATHGoogle Scholar
  16. 16.
    Isbell, J.: Atomless parts of spaces. Math. Scand. 31, 5–32 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)zbMATHGoogle Scholar
  18. 18.
    Johnstone, P.T.: Vietoris locales and localic semilattices, Continuous lattices and their applications (Bremen, 1982), pp. 155–180. Lecture Notes in Pure and Application Mathematics, vol. 101, Dekker, New York (1985)Google Scholar
  19. 19.
    Jung, A., Kegelmann, M., Moshier, M.A.: Stably compact spaces and closed relations. Electron. Notes Theoret. Comput. Sci. 45, 209–231 (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Picado, J., Pultr, A.: Frames and Locales. Topology Without Points, Frontiers in Mathematics. Springer, Basel (2012)zbMATHGoogle Scholar
  21. 21.
    Townsend, C.F.: Preframe techniques in constructive locale theory. Ph.D. thesis, University of London (1996)Google Scholar
  22. 22.
    Wyler, O.: Algebraic theories of continuous lattices. In: Continuous Lattices, pp. 390–413. Springer, Berlin (1981)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • G. Bezhanishvili
    • 1
    Email author
  • D. Gabelaia
    • 2
  • J. Harding
    • 1
  • M. Jibladze
    • 2
  1. 1.New Mexico State UniversityLas CrucesUSA
  2. 2.TSU Razmadze Mathematical InstituteTbilisiGeorgia

Personalised recommendations