Advertisement

Categorified Cyclic Operads

  • Pierre-Louis Curien
  • Jovana ObradovićEmail author
Article
  • 4 Downloads

Abstract

In this paper, we introduce a notion of categorified cyclic operad for set-based cyclic operads with symmetries. Our categorification is obtained by relaxing defining axioms of cyclic operads to isomorphisms and by formulating coherence conditions for these isomorphisms. The coherence theorem that we prove has the form “all diagrams of canonical isomorphisms commute”. Our coherence results come in two flavours, corresponding to the “entries-only” and “exchangeable-output” definitions of cyclic operads. Our proof of coherence in the entries-only style is of syntactic nature and relies on the coherence of categorified non-symmetric operads established by Došen and Petrić. We obtain the coherence in the exchangeable-output style by “lifting” the equivalence between entries-only and exchangeable-output cyclic operads, set up by the second author. Finally, we show that a generalization of the structure of profunctors of Bénabou provides an example of categorified cyclic operad, and we exploit the coherence of categorified cyclic operads in proving that the Feynman category for cyclic operads, due to Kaufmann and Ward, admits an odd version.

Keywords

Cyclic operads Categorification Coherence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Bénabou, J.: Les distributeurs. Université Catholique de Louvain, Institut de Mathématique Pure et Appliquée, rapport 33 (1973)Google Scholar
  2. 2.
    Borceux, F.: Handbook of Categorical Algebra I: Basic Category Theory. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  3. 3.
    Burroni, A.: Higher-dimensional word problems with applications to equational logic. Theor. Comput. Sci. 115(1), 43–62 (1993)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chapoton, F.: Anticyclic Operads and Auslander-Reiten Translation, slides (2006)Google Scholar
  5. 5.
    Cheng, E., Gurski, N., Riehl, E.: Cyclic multicategories, multivariable adjunctions and mates. J. K-Theory 13(2), 337–396 (2014)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Curien, P.-L., Mimram, S.: Coherent presentations of monoidal categories. Log. Methods Comput. Sci. 13(3), 1–38 (2017)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Curien, P.-L., Obradović, J.: A formal language for cyclic operads. High. Struct. 1(1), 22–55 (2017)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Curien, P.-L., Obradovic, J., Ivanovic, J.: Syntactic aspects of hypergraph polytopes. J. Homotopy Relat. Struct. 14(1), 235–279 (2019)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Day, B., Street, R.: Lax monoids, pseudo-operads and convolution. Contemp. Math. 318, 75–96 (2003)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Dehling, M., Vallette, B.: Symmetric homotopy theory for operads. (2015). arXiv:1503.02701
  11. 11.
    Došen, K., Petrić, Z.: Hypergraph polytopes. Topol. Appl. 158, 1405–1444 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Došen, K., Petrić, Z.: Weak Cat-operads. Log. Methods Comput. Sci. 11(1), 1–23 (2015)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Doubek, M., Jurčo, B., Markl, M., Sachs, I.: Algebraic structure of String Field theory (2016) (unpublished manuscript)Google Scholar
  14. 14.
    Getzler, E., Kapranov, M.: Cyclic operads and cyclic homology. In: Bott, R. (ed.) Geometry, Topology and Physics for Raoul Bott, pp. 167–201. International Press, Cambridge (1995)Google Scholar
  15. 15.
    Guiraud, Y., Malbos, P.: Polygraphs of finite derivation type. Math. Struct. Comput. Sci. 28(2), 155–201 (2018)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kaufmann, R.M., Ward, B.C.: Feynman categories. In: Astérisque (Société Mathématique de France). Numéro, vol. 387 (2017)Google Scholar
  17. 17.
    Kelly, G.M.: On the operads of. J. P. May. Repr. Theory Appl. Categ. 13, 1–13 (2005)zbMATHGoogle Scholar
  18. 18.
    Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Berlin (1998)zbMATHGoogle Scholar
  19. 19.
    Markl, M.: Operads and PROPs. In: Bott, R. (ed.) Handbook for Algebra, vol. 5, pp. 87–140. Elsevier/North-Holland, Amsterdam (2008)Google Scholar
  20. 20.
    Markl, M.: Modular envelopes, OSFT and nonsymmetric (non-\(\Sigma \)) modular operads. J. Noncommut. Geom. 10, 775–809 (2016)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Markl, M., Schnider, S., Stasheff, J.: Operads in Algebra, Topology and Physics. American Mathematical Society, Providence (2002)zbMATHGoogle Scholar
  22. 22.
    Obradović, J.: Monoid-like definitions of cyclic operads. Theory Appl. Categ. 32(12), 396–436 (2017)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Street, R.: Limits indexed by category-valued 2-functors. J. Pure Appl. Algebra 8(2), 149–181 (1976)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.IRIF, InriaUniversité Paris Diderot and πr² TeamParisFrance
  2. 2.Institute of MathematicsCzech Academy of SciencesPragueCzech Republic

Personalised recommendations