Advertisement

Homotopical Adjoint Lifting Theorem

  • David WhiteEmail author
  • Donald Yau
Article

Abstract

This paper provides a homotopical version of the adjoint lifting theorem in category theory, allowing for Quillen equivalences to be lifted from monoidal model categories to categories of algebras over colored operads. The generality of our approach allows us to simultaneously answer questions of rectification and of changing the base model category to a Quillen equivalent one. We work in the setting of colored operads, and we do not require them to be \(\Sigma \)-cofibrant. Special cases of our main theorem recover many known results regarding rectification and change of model category, as well as numerous new results. In particular, we recover a recent result of Richter–Shipley about a zig-zag of Quillen equivalences between commutative \(H\mathbb {Q}\)-algebra spectra and commutative differential graded \(\mathbb {Q}\)-algebras, but our version involves only three Quillen equivalences instead of six. We also work out the theory of how to lift Quillen equivalences to categories of colored operad algebras after a left Bousfield localization.

Keywords

Algebraic-topology Category-theory Model-categories Quillen-equivalences Operads Rectification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Batanin, M., White, D.: Left Bousfield localization and Eilenberg–Moore categories (preprint). arXiv:1606.01537
  2. 2.
    Berger, C., Moerdijk, I.: Axiomatic homotopy theory for operads. Comment. Math. Helv. 78, 805–831 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berger, C., Moerdijk, I.: The Boardman–Vogt resolution of operads in monoidal model categories. Topology 45, 807–849 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berger, C., Moerdijk, I.: Resolution of coloured operads and rectification of homotopy algebras. Contemp. Math. 431, 31–58 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Borceux, F.: Handbook of Categorical Algebra 2, Categories and Structures. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  6. 6.
    Castiglioni, J.L., Cortiñas, G.: Cosimplicial versus DG-rings: a version of the Dold–Kan correspondence. J. Pure Appl. Algebra 191(1–2), 119–142 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Elmendorf, A.D., Mandell, M.A.: Rings, modules, and algebras in infinite loop space theory. Adv. Math. 205, 163–228 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Frégier, Y., Markl, M., Yau, D.: The \(L_\infty \)-deformation complex of diagrams of algebras. N. Y. J. Math. 15, 353–392 (2009)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Fresse, B.: Props in model categories and homotopy invariance of structures. Georgian Math. J. 17, 79–160 (2010)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Fresse, B.: Modules Over Operads and Functors, Lecture Notes in Math. Springer, Berlin (1967)Google Scholar
  11. 11.
    Getzler, E., Kapranov, M.M.: Cyclic operads and cyclic homology. In: Yau, S.-T. (ed.) Geometry, Topology and Physics for R. Bott, Conf. Proc. Lect. Notes Geom. Top., vol. 4, pp. 167–201. International Press (1995)Google Scholar
  12. 12.
    Getzler, E., Kapranov, M.M.: Modular operads. Compos. Math. 110, 65–126 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gutiérrez, J.J., White, D.: Encoding equivariant commutativity via operads. Algebr. Geom. Topol. 18(5), 2919–2962 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hackney, P., Robertson, M., Yau, D.: Shrinkability, relative left properness, and derived base change. N. Y. J. Math. 23, 83–117 (2017)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Harper, J.E.: Homotopy theory of modules over operads in symmetric spectra, Algebr. Geom. Topol. 9(3), 1637–1680 (2009); corrigendum 15, 1229–1238 (2015)Google Scholar
  16. 16.
    Harper, J.E.: Homotopy theory of modules over operads and non-\(\Sigma \) operads in monoidal model categories. J. Pure Appl. Algebra 214, 1407–1434 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Harper, J.E., Hess, K.: Homotopy completion and topological Quillen homology of structured ring spectra. Geom. Topol. 17(3), 1325–1416 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hirschhorn, P.S.: Model Categories and Their Localizations, Math. Surveys and Monographs, vol. 99. American Mathematical Society, Providence (2003)Google Scholar
  19. 19.
    Hornbostel, Jens: Preorientations of the derived motivic multiplicative group. Algebr. Geom. Topol. 13(5), 2667–2712 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hovey, M.: Model Categories, Math. Surveys and Monographs, vol. 63. American Mathematical Society, Providence (1999)Google Scholar
  21. 21.
    Hovey, M.: Monoidal model categories (preprint). arXiv:math/9803002
  22. 22.
    Lada, T., Markl, M.: Strongly homotopy Lie algebras. Commun. Algebra 23, 2147–2161 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mac Lane, S.: Categories for the Working Mathematician, Grad. Texts in Math., vol. 5, 2nd edn. Springer, New York (1998)zbMATHGoogle Scholar
  24. 24.
    Markl, S., Shnider, S., Stasheff, J.: Operads in Algebra, Topology and Physics, Math. Surveys and Monographs, vol. 96. American Mathematical Society, Providence (2002)zbMATHGoogle Scholar
  25. 25.
    May, J.P.: The Geometry of Iterated Loop Spaces, Lecture Notes in Math., vol. 271. Springer, New York (1972)CrossRefGoogle Scholar
  26. 26.
    Muro, F.: Homotopy theory of nonsymmetric operads. Algebr. Geom. Topol. 11, 1541–1599 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Muro, F.: Homotopy theory of nonsymmetric operads, II: change of base category and left properness. Algebr. Geom. Topol. 14, 229–281 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pavlov, D., Scholbach, J.: Admissibility and rectification of colored symmetric operads (preprint). arXiv:1410.5675 (2014)
  29. 29.
    Pavlov, D., Scholbach, J.: Symmetric operads in abstract symmetric spectra (preprint). arXiv:1410.5699 (2014)
  30. 30.
    Quillen, D.G.: Rational homotopy theory. Ann. Math. 90, 204–265 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Richter, B., Shipley, B.: An algebraic model for commutative \(HZ\)-algebras. arXiv:1411.7238 (2014)
  32. 32.
    Schwede, S., Shipley, B.: Algebras and modules in monoidal model categories. Proc. Lond. Math. Soc. 80, 491–511 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Schwede, S., Shipley, B.: Equivalences of monoidal model categories. Algebr. Geom. Topol. 3, 287–334 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Shipley, Brooke: \(HZ\)-algebra spectra are differential graded algebras. Am. J. Math. 129, 351–379 (2007)CrossRefzbMATHGoogle Scholar
  35. 35.
    Spitzweck, M.: Operads, algebras and modules in general model categories (preprint). arXiv:math/0101102 (2001)
  36. 36.
    Stasheff, J.D.: Homotopy associativity of \(H\)-spaces I, II. Trans. Am. Math. Soc. 108, 275–312 (1963)MathSciNetzbMATHGoogle Scholar
  37. 37.
    White, D.: Model structures on commutative monoids in general model categories. J. Pure Appl. Algebra 221(12), 3124–3168 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    White, D.: Monoidal Bousfield localizations and algebras over operads (preprint). arXiv:1404.5197 (2014)
  39. 39.
    White, D.: Monoidal Bousfield localizations and algebras over operads. Thesis (Ph.D.), Wesleyan University (2014)Google Scholar
  40. 40.
    White, D., Yau, D.: Bousfield localization and algebras over colored operads. Appl. Categ. Struct. 26, 153–203 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    White, D., Yau, D.: Right Bousfield Localization and Eilenberg–Moore Categories. arXiv:1609.03635
  42. 42.
    Yau, D.: Dwyer-Kan homotopy theory of algebras over operadic collections. arXiv:1608.01867
  43. 43.
    Yau, D., Johnson, M.W.: A Foundation for PROPs, Algebras, and Modules, Math. Surveys and Monographs, vol. 203. American Mathematical Society, Providence (2015)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Denison UniversityGranvilleUSA
  2. 2.The Ohio State University at NewarkNewarkUSA

Personalised recommendations