Applied Categorical Structures

, Volume 27, Issue 1, pp 65–84 | Cite as

Boolean Perspectives of Idioms and the Boyle Derivative

  • Jaime Castro Pérez
  • Mauricio Medina Bárcenas
  • José Ríos Montes
  • Angel Zaldívar CorichiEmail author


We are concerned with the boolean or more generally with the complemented properties of idioms (complete upper-continuous modular lattices). Simmons (Cantor–Bendixson, socle, and atomicity., 2014) introduces a device which captures in some informal speaking how far the idiom is from being complemented, this device is the Cantor-Bendixson derivative. There exists another device that captures some boolean properties, the so-called Boyle-derivative, this derivative is an operator on the assembly (the frame of nuclei) of the idiom. The Boyle-derivative has its origins in module theory. In this investigation we produce an idiomatic analysis of the boolean properties of any idiom using the Boyle-derivative and we give conditions on a nucleus j such that [jtp] is a complete boolean algebra. We also explore some properties of nuclei j such that \(A_{j}\) is a complemented idiom.


Complete boolean algebras Lattices Frames Modules Rings 

Mathematics Subject Classification

Primary 06Cxx Secondary 16S90 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank the referee for a careful and detailed reading of the manuscript and suggestions to improve it. This work was supported by the grant UNAM-DGAPA-PAPIIT IN100517.


  1. 1.
    Arroyo Paniagua, M.J., Montes, J.R.: Some aspects of spectral torsion theories. Commun. Algebra 22(12), 4991–5003 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boyle, A.K.: The large condition for rings with krull dimension. Proc. Am. Math. Soc. 72(1), 27–32 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Castro, J., González, P.M., Montes, J.: Some aspects of-full modules. East-West J. Math. 9(2), 139–159 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Golan, J.S.: Torsion Theories, vol. 29. Longman Scientific & Technical, Harlow (1986)zbMATHGoogle Scholar
  5. 5.
    González, P.M.: Algunos aspectos sobre módulos \(\tau \) -plenos, Ph.D. thesis, Universidad Nacional Autónoma de México (2008)Google Scholar
  6. 6.
    Gómez Pardo, J.L.: Spectral Gabriel topologies and relative singular functors. Commun. Algebra 13(1), 21–57 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Golan, J.S., Simmons, H.: Derivatives, nuclei and dimensions on the frame of torsion theories. Pitman Research Notes in Mathematics Series (1988)Google Scholar
  8. 8.
    Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1986)zbMATHGoogle Scholar
  9. 9.
    José, M., Paniagua, A., Montes, J.R., Wisbauer, R.: Spectral torsion theories in module categories. Commun. Algebra 25(7), 2249–2270 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jan-Erik, R.: Locally Distributive Spectral Categories and Strongly Regular Rings, Reports of the Midwest Category Seminar, pp. 156–181. Springer, Berlin (1967)Google Scholar
  11. 11.
    Simmons, H.: The semiring of topologizing filters of a ring. Isr. J. Math. 61(3), 271–284 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Simmons, Harold: Near-discreteness of modules and spaces as measured by Gabriel and Cantor. J. Pure Appl. Algebra 56(2), 119–162 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Simmons, H.: The assembly of a frame. (2006)
  14. 14.
    Simmons, H.: The basics of frame theory. (2006)
  15. 15.
    Simmons, H.: The higher level CB properties of frames. (2006)
  16. 16.
    Simmons, H.: A decomposition theory for complete modular meet-continuous lattices. Algebra Universalis 64(3–4), 349–377 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Simmons, H.: How to generate G-topologies for module presheaf categories. (2012)
  18. 18.
    Simmons, H.: Cantor–Bendixson Properties of the Assembly of a Frame, Leo Esakia on Duality in Modal and Intuitionistic Logics, pp. 217–255. Springer, Berlin (2014)Google Scholar
  19. 19.
    Simmons, H.: Cantor–Bendixson, socle, and atomicity., 2 (2014)
  20. 20.
    Simmons, H.: The Gabriel and the Boyle derivatives for a modular idiom., 3 (2014)
  21. 21.
    Simmons, H.: An introduction to idioms., 2 (2014)
  22. 22.
    Simmons, H.: A lattice theoretic analysis of a result due to Hopkins and Levitzki., 3 (2014)
  23. 23.
    Simmons, H.: The relative basic derivatives for an idiom., 2 (2014)
  24. 24.
    Simmons, H.: Examples of higher level assemblies (to appear) (2017)Google Scholar
  25. 25.
    Stenström, B.: Rings of Quotients: An Introduction to Methods of Ring Theory, vol. 217. Springer, Berlin (1975)CrossRefzbMATHGoogle Scholar
  26. 26.
    Wilson, J.T.: The assembly tower and some categorical and algebraic aspects of frame theory. Ph.D. thesis, Carnegie Mellon University (1994)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Escuela de Ingeniería y CienciasInstituto Tecnolólogico y de Estudios Superiores de MonterreyMexicoMexico
  2. 2.Department of MathematicsChungnam National UniversityYuseong-gu, DaejeonRepublic of Korea
  3. 3.Instituto de MatemáticasUniversidad Nacional, Autónoma de México, Area de la Investigación CientíficaMexicoMexico
  4. 4.Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e IngenieríasUniversidad de GuadalajaraGuadalajaraMexico

Personalised recommendations