Advertisement

Reactive Heart Rate Variability and Cardiac Entropy in Children with Internalizing Disorder and Healthy Controls

  • Charlotte FiskumEmail author
  • Tonje G. Andersen
  • Magne A. Flaten
  • Per M. Aslaksen
  • Xavier Bornas
  • Karl Jacobsen
Article

Abstract

Atypical vagal reactivity has been linked to internalizing psychopathology and less adaptive emotion regulation, but reactive cardiac entropy is largely unexplored. Therefore, this study investigated reactive vagally-mediated heart-rate variability (vmHRV) and cardiac entropy in relation to emotion regulation. Electrocardiograms of 32 children (9–13 years) with internalizing difficulties and 25 healthy controls were recorded during a baseline and a sad film. Reactivity-measures were calculated from the root mean square of successive differences (RMSSD) and sample entropy (SampEn). Emotion regulation was assessed using the emotion regulation checklist (ERC). Determinants of reactive SampEn and RMSSD were analyzed with marginal and generalized linear models. The study also modeled the relationship between cardiac reactivity and emotion regulation while controlling for psychopathology. The two groups differed significantly in vmHRV-reactivity, with seemingly higher vagal-withdrawal in the control group. SampEn increased significantly during the film, but less in subjects with higher psychopathology. Higher reactive entropy was a significant predictor of better emotion regulation as measured by the ERC. Internalizing subjects and controls showed significantly different vmHRV-reactivity. Higher reactive cardiac entropy was associated with lower internalizing psychopathology and better emotion regulation and may reflect on organizational features of the neurovisceral system relevant for adaptive emotion regulation.

Keywords

Cardiac complexity Reactive HRV Reactive complexity Negative emotion Emotion regulation 

Notes

Acknowledgements

The authors wish to thank the families who participated. The authors also wish to acknowledge professor Birgit Svendsen who contributed to the project before her passing in 2016, and student-assistants Mira Aasen and Marie Næss who helped with parts of the data collection. We also want to thank Drs. Matthew Long, Julian F. Thayer, Anita L. Hansen and Patrick Vogel for valuable discussions and input on the results. Finally, we wish to thank the reviewers for helpful comments on the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Achenbach, T. M., & Rescorla, L. A. (2001). Manual for the ASEBA school-age forms & profiles. VT: Burlington.Google Scholar
  2. Aftanas, L. I., Lotova, N. V., Koshkarov, V. I., Pokrovskaja, V. L., Popov, S. A., & Makhnev, V. P. (1997). Non-linear analysis of emotion EEG: Calculation of Kolmogorov entropy and the principal Lyapunov exponent. Neuroscience Letters, 226(1), 13–16.  https://doi.org/10.1016/S0304-3940(97)00232-2.Google Scholar
  3. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.  https://doi.org/10.1109/TAC.1974.1100705.Google Scholar
  4. Bassett, D. S., & Bullmore, E. T. (2016). Small-world brain networks revisited. Neuroscientist, 23(5), 499–516.  https://doi.org/10.1177/1073858416667720.Google Scholar
  5. Beauchaine, T. P. (2015). Respiratory sinus arrhythmia: A transdiagnostic biomarker of emotion dysregulation and psychopathology. Current Opinion in Psychology, 3, 43–47.  https://doi.org/10.1016/j.copsyc.2015.01.017.Google Scholar
  6. Beauchaine, T. P., & Thayer, J. F. (2015). Heart rate variability as a transdiagnostic biomarker of psychopathology. International Journal of Psychophysiology, 98(2), 338–350.  https://doi.org/10.1016/j.ijpsycho.2015.08.004.Google Scholar
  7. Beesdo, K., Knappe, S., & Pine, D. S. (2009). Anxiety and anxiety disorders in children and adolescents: Developmental issues and implications for DSM-V. The Psychiatric clinics of North America, 32(3), 483–524.  https://doi.org/10.1016/j.psc.2009.06.002.Google Scholar
  8. Benarroch, E. E. (1993). The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clinic Proceedings, 68(10), 988–1001.  https://doi.org/10.1016/S0025-6196(12)62272-1.Google Scholar
  9. Bertuglia, C. S., & Vaio, F. (2005). Nonlinearity, chaos, and complexity: The dynamics of natural and social systems. Oxford: OUP Oxford.Google Scholar
  10. Bornas, X., & de la Torre-Luque, A. (2016). The thin line between health and disease: A matter of dynamical variability. Fractal Geometry and Nonlinear Analysis in Medicine and Biology, 1, 2.  https://doi.org/10.15761/fgnamb.1000128.Google Scholar
  11. Bornas, X., Llabrés, J., Noguera, M., López, A. M., Gelabert, J. M., & Vila, I. (2006). Fear induced complexity loss in the electrocardiogram of flight phobics: A multiscale entropy analysis. Biological Psychology, 73(3), 272–279.  https://doi.org/10.1016/j.biopsycho.2006.05.004.Google Scholar
  12. Bradley, M. M., & Lang, P. J. (1994). measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–59.Google Scholar
  13. Davis, E. L., Levine, L. J., Lench, H. C., & Quas, J. A. (2010). Metacognitive emotion regulation: Children’s awareness that changing thoughts and goals can alleviate negative emotions. Emotion, 10(4), 498–510.  https://doi.org/10.1037/a0018428.Google Scholar
  14. Davis, E. L., Quiñones-Camacho, L. E., & Buss, K. A. (2016). The effects of distraction and reappraisal on children’s parasympathetic regulation of sadness and fear. Journal of Experimental Child Psychology, 142, 344–358.  https://doi.org/10.1016/j.jecp.2015.09.020.Google Scholar
  15. de la Torre-Luque, A., Bornas, X., Balle, M., & Fiol-Veny, A. (2016). Complexity and nonlinear biomarkers in emotional disorders: A meta-analytic study. Neuroscience and Biobehavioral Reviews, 68, 410–422.  https://doi.org/10.1016/j.neubiorev.2016.05.023.Google Scholar
  16. de la Torre-Luque, A., Caparros-Gonzalez, R. A., Bastard, T., Vico, F. J., & Buela-Casal, G. (2017a). Acute stress recovery through listening to Melomics relaxing music: A randomized controlled trial. Nordic Journal of Music Therapy, 26(2), 124–141.  https://doi.org/10.1080/08098131.2015.1131186.Google Scholar
  17. de la Torre-Luque, A., Fiol-Veny, A., Bornas, X., Balle, M., & Llabres, J. (2017b). Impaired cardiac profile in adolescents with an increasing trajectory of anxiety when confronting an acute stressor. European Child and Adolescent Psychiatry, 26(12), 1501–1510.  https://doi.org/10.1007/s00787-017-1009-8.Google Scholar
  18. Fiol-Veny, A., De La Torre-Luque, A., Balle, M., & Bornas, X. (2018a). Altered heart rate regulation in adolescent girls and the vulnerability for internalizing disorders. Frontiers in Physiology, 9, 852.  https://doi.org/10.3389/fphys.2018.00852.Google Scholar
  19. Fiol-Veny, A., De la Torre-Luque, A., Balle, M., & Bornas, X. (2018b). Diminished heart rate complexity in adolescent girls: A sign of vulnerability to anxiety disorders? Anxiety Stress and Coping, 31(4), 375–386.  https://doi.org/10.1080/10615806.2018.1475004.Google Scholar
  20. Fiskum, C., Andersen, T. G., Aslaksen, P. M., Svendsen, B., Flaten, M. A., & Jacobsen, K. (2017). Cardiac complexity and emotional dysregulation in children. International Journal of Psychophysiology, 121, 38–45.  https://doi.org/10.1016/j.ijpsycho.2017.08.005.Google Scholar
  21. Fiskum, C., Andersen, T. G., Bornas, X., Aslaksen, P. M., Flaten, M. A., & Jacobsen, K. (2018). Non-linear heart rate variability as a discriminator of internalizing psychopathology and negative affect in children with internalizing problems and healthy controls. Frontiers in Physiology, 9, 561.  https://doi.org/10.3389/fphys.2018.00561.Google Scholar
  22. Fortunato, C. K., Gatzke-Kopp, L. M., & Ram, N. (2013). Associations between respiratory sinus arrhythmia reactivity and internalizing and externalizing symptoms are emotion specific. Cognitive, Affective & Behavioral Neuroscience, 13(2), 238–251.  https://doi.org/10.3758/s13415-012-0136-4.Google Scholar
  23. Gentzler, A. L., Santucci, A. K., Kovacs, M., & Fox, N. A. (2009). Respiratory sinus arrhythmia reactivity predicts emotion regulation and depressive symptoms in at-risk and control children. Biological Psychology, 82(2), 156–163.  https://doi.org/10.1016/j.biopsycho.2009.07.002.Google Scholar
  24. Graziano, P., & Derefinko, K. (2013). Cardiac vagal control and children’s adaptive functioning: A meta-analysis. Biological Psychology, 94(1), 22–37.  https://doi.org/10.1016/j.biopsycho.2013.04.011.Google Scholar
  25. Guastello, S. J. (2015). The complexity of the psychological self and the principle of optimum variability. Nonlinear Dynamics, Psychology, and Life Sciences, 19(4), 511–527.Google Scholar
  26. Hamilton, J. L., & Alloy, L. B. (2016). Atypical reactivity of heart rate variability to stress and depression across development: Systematic review of the literature and directions for future research. Clinical Psychology Review, 50, 67–79.  https://doi.org/10.1016/j.cpr.2016.09.003.Google Scholar
  27. Hayward, C., & Sanborn, K. (2002). Puberty and the emergence of gender differences in psychopathology. Journal of Adolescent Health, 30(4), 49–58.  https://doi.org/10.1016/S1054-139X(02)00336-1.Google Scholar
  28. Kemp, A. H., Quintana, D. S., Gray, M. A., Felmingham, K. L., Brown, K., & Gatt, J. M. (2010). Impact of depression and antidepressant treatment on heart rate variability: A review and meta-analysis. Biological Psychiatry, 67(11), 1067–1074.  https://doi.org/10.1016/j.biopsych.2009.12.012.Google Scholar
  29. Kessler, R. C., Amminger, G. P., Aguilar-Gaxiola, S., Alonso, J., Lee, S., & Ustun, T. B. (2007). Age of onset of mental disorders: A review of recent literature. Current Opinion in Psychiatry, 20(4), 359–364.  https://doi.org/10.1097/YCO.0b013e32816ebc8c.Google Scholar
  30. Köbele, R., Koschke, M., Schulz, S., Wagner, G., Yeragani, S., Ramachandraiah, C. T., et al. (2010). The influence of negative mood on heart rate complexity measures and baroreflex sensitivity in healthy subjects. Indian Journal of Psychiatry, 52(1), 42–47.  https://doi.org/10.4103/0019-5545.58894.Google Scholar
  31. Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84(3), 394–421.  https://doi.org/10.1016/j.biopsycho.2010.03.010.Google Scholar
  32. Lehrer, P. M., & Eddie, D. (2013). Dynamic processes in regulation and some implications for biofeedback and biobehavioral interventions. Applied Psychophysiology and Biofeedback, 38(2), 143–155.  https://doi.org/10.1007/s10484-013-9217-6.Google Scholar
  33. Lenroot, R. K., & Giedd, J. N. (2010). Sex differences in the adolescent brain. Brain and Cognition, 72(1), 46–55.  https://doi.org/10.1016/j.bandc.2009.10.008.Google Scholar
  34. Leupoldt, A., Rohde, J., Beregova, A., Thordsen-Sörensen, I., Nieden, J., & Dahme, B. (2007). Films for eliciting emotional states in children. Behavior Research Methods, 39(3), 606–609.Google Scholar
  35. Mateo, M., Blasco-Lafarga, C., Martinez-Navarro, I., Guzman, J. F., & Zabala, M. (2012). Heart rate variability and pre-competitive anxiety in BMX discipline. European Journal of Applied Physiology, 112(1), 113–123.  https://doi.org/10.1007/s00421-011-1962-8.Google Scholar
  36. McCraty, R., & Zayas, M. A. (2014). Cardiac coherence, self-regulation, autonomic stability, and psychosocial well-being. Frontiers in Psychology, 5, 1090.  https://doi.org/10.3389/fpsyg.2014.01090.Google Scholar
  37. McLean, C. P., Asnaani, A., Litz, B. T., & Hofmann, S. G. (2011). Gender differences in anxiety disorders: Prevalence, course of illness, comorbidity and burden of illness. Journal of Psychiatric Research, 45(8), 1027–1035.  https://doi.org/10.1016/j.jpsychires.2011.03.006.Google Scholar
  38. Mikolajewski, A. J., & Scheeringa, M. S. (2018). Examining the prospective relationship between pre-disaster respiratory sinus arrhythmia and post-disaster posttraumatic stress disorder symptoms in children. Journal of Abnormal Child Psychology, 46(7), 1535–1545.  https://doi.org/10.1007/s10802-017-0396-0.Google Scholar
  39. Pang, K. C., & Beauchaine, T. P. (2013). Longitudinal patterns of autonomic nervous system responding to emotion evocation among children with conduct problems and/or depression. Developmental Psychobiology, 55(7), 698–706.  https://doi.org/10.1002/dev.21065.Google Scholar
  40. Pikkujämsä, S. M., Mäkikallio, T. H., Sourander, L. B., Räihä, I. J., Puukka, P., Skyttä, J., et al. (1999). Cardiac interbeat interval dynamics from childhood to senescence: Comparison of conventional and new measures based on fractals and chaos theory. Circulation, 100(4), 393–399.  https://doi.org/10.1161/01.CIR.100.4.393.Google Scholar
  41. Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our evolutionary heritage: A Polyvagal Theory. Psychophysiology, 32(4), 301–318.  https://doi.org/10.1111/j.1469-8986.1995.tb01213.x.Google Scholar
  42. Porges, S. W., Doussard-Roosevelt, J. A., & Maiti, A. K. (1994). Vagal tone and the physiological regulation of emotion. Monographs of the Society for Research in Child Development, 59(2–3), 167–186.  https://doi.org/10.2307/1166144.Google Scholar
  43. Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology - Heart and Circulatory Physiology, 278(6), H2039–H2049.  https://doi.org/10.1152/ajpheart.2000.278.6.H2039.Google Scholar
  44. Rottenberg, J., Ray, R. D., & Gross, J. J. (2007). Emotion elicitation using films. Handbook of emotion elicitation and assessment (pp. 9–28). New York, NY: Oxford University Press.Google Scholar
  45. Sacha, J. (2013). Why should one normalize heart rate variability with respect to average heart rate. Frontiers in Physiology, 4, 306.  https://doi.org/10.3389/fphys.2013.00306.Google Scholar
  46. Sassi, R., Cerutti, S., Lombardi, F., Malik, M., Huikuri, H. V., Peng, C. K., et al. (2015). Advances in heart rate variability signal analysis: Joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology, 17(9), 1341–1353.  https://doi.org/10.1093/europace/euv015.Google Scholar
  47. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.Google Scholar
  48. Seppala, S., Laitinen, T., Tarvainen, M. P., Tompuri, T., Veijalainen, A., Savonen, K., et al. (2014). Normal values for heart rate variability parameters in children 6–8 years of age: The PANIC Study. Clinical Physiology and Functional Imaging, 34(4), 290–296.  https://doi.org/10.1111/cpf.12096.Google Scholar
  49. Shields, A., & Cicchetti, D. (1997). Emotion regulation among school-age children: The development and validation of a new criterion Q-sort scale. Developmental Psychology, 33(6), 906–917.  https://doi.org/10.1037//0012-1649.33.6.906.Google Scholar
  50. Spiller, S. A., Fitzsimons, G. J., Lynch, J. G., & McClelland, G. (2013). Spotlights, floodlights, and the magic number zero: Simple effects tests in moderated regression. Journal of Marketing Research, 50(2), 277–288.  https://doi.org/10.1509/jmr.12.0420.Google Scholar
  51. Stange, J. P., Hamilton, J. L., Olino, T. M., Fresco, D. M., & Alloy, L. B. (2017). Autonomic reactivity and vulnerability to depression: A multi-wave study. Emotion, 17(4), 602–615.  https://doi.org/10.1037/emo0000254.Google Scholar
  52. Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV—heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210–220.  https://doi.org/10.1016/j.cmpb.2013.07.024.Google Scholar
  53. Thayer, J. F., Åhs, F., Fredrikson, M., Sollers Iii, J. J., & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience and Biobehavioral Reviews, 36(2), 747–756.  https://doi.org/10.1016/j.neubiorev.2011.11.009.Google Scholar
  54. Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61(3), 201–216.  https://doi.org/10.1016/S0165-0327(00)00338-4.Google Scholar
  55. Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience and Biobehavioral Reviews, 33(2), 81–88.  https://doi.org/10.1016/j.neubiorev.2008.08.004.Google Scholar
  56. Thelen, E., & Smith, L. (1994). A dynamic systems approach to the development of perception and action. Cambridge, MA: MIT Press.Google Scholar
  57. Valenza, G., Allegrini, P., Lanatà, A., & Scilingo, E. P. (2012). Dominant Lyapunov exponent and approximate entropy in heart rate variability during emotional visual elicitation. Frontiers in Neuroengineering, 5, 3.  https://doi.org/10.3389/fneng.2012.00003.Google Scholar
  58. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440.  https://doi.org/10.1038/30918.Google Scholar
  59. Weiner, O. M., & McGrath, J. J. (2017). Test-retest reliability of pediatric heart rate variability: A meta-analysis. J Psychophysiol, 31(1), 6–28.  https://doi.org/10.1027/0269-8803/a000161.Google Scholar
  60. West, B. J. (2014). Where medicine went wrong : Rediscovering the path to complexity. Singapore: World Scientific Publishing Co Pte Ltd.Google Scholar
  61. White, R. E., Kross, E., & Duckworth, A. L. (2015). Spontaneous self-distancing and adaptive self-reflection across adolescence. Child Development, 86(4), 1272–1281.  https://doi.org/10.1111/cdev.12370.Google Scholar
  62. Wilder, J. (1962). Basimetric approach (law of initial value) to biological rhythms. Annals of the New York Academy of Sciences, 98(4), 1211–1220.  https://doi.org/10.1111/j.1749-6632.1962.tb30629.x.Google Scholar
  63. World Medical Association. (2013). World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. The Journal of the American Medical Association, 310(20), 2191–2194.  https://doi.org/10.1001/jama.2013.281053.Google Scholar
  64. Young, H., & Benton, D. (2015). We should be using nonlinear indices when relating heart-rate dynamics to cognition and mood. Scientific Reports, 5, 16619.  https://doi.org/10.1038/srep16619.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PsychologyNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of Child and Adolescent PsychiatrySt. Olav’s University HospitalTrondheimNorway
  3. 3.Department of PsychologyThe Arctic UniversityTromsøNorway
  4. 4.Department of PsychologyThe University of the Balearic IslandsPalmaSpain

Personalised recommendations