Advertisement

Applied Psychophysiology and Biofeedback

, Volume 44, Issue 1, pp 61–70 | Cite as

Preliminary Findings on the Optimization of Visual Performance in Patients with Age-Related Macular Degeneration Using Biofeedback Training

  • Mirella T. S. Barboni
  • Zsuzsanna Récsán
  • Zsuzsanna Szepessy
  • Mónika Ecsedy
  • Balázs Vince Nagy
  • Dora F. Ventura
  • Zoltán Zsolt Nagy
  • János NémethEmail author
Article
  • 69 Downloads

Abstract

Biofeedback training has been used to improve fixation stability in subjects with central vision loss, but the psychophysiological mechanisms underlying the functional improvements resulted was not reported. The aim of this study was to investigate the effects of microperimetric biofeedback training on different visual functions and self-reported quality of vision in subjects with age-related macular degeneration. This case-control study included six subjects (72.0 ± 6.1 years of age) diagnosed with age-related macular degeneration (wet or dry) with low vision (best corrected visual acuity ranging from 0.5 to 0.1 in the study eye) and five healthy volunteers (64.2 ± 3.7 years of age). Ophthalmological and functional examinations were obtained from all subjects twice with an approximately 3-month interval. Subjects with central vision loss performed 12 sessions (10 min each) of biofeedback training between the two examinations. Functional evaluation included: microperimetry, spatial luminance contrast sensitivities, color vision thresholds, visual acuity, and reading speed. Visual performance during daily activities was also assessed using a standardized questionnaire. The ratio (2nd/1st examination) of the spatial luminance contrast sensitivity at lower spatial frequencies were much higher for the training subjects compared with the controls. In addition, self-reported quality of vision improved after the training. The significant improvement of the visual function such as spatial luminance contrast sensitivity may explain the better self-reported quality of vision. Possible structural and physiological mechanisms underlying this neuromodulation are discussed.

Keywords

Biofeedback training Psychophysiology Visual system Low vision Macular degeneration 

Notes

Acknowledgements

We would like to thank very much Kornél Szekeres, Miklós Maczkó, and Ágnes Urbin for their support to develop the software. We would also like to acknowledge financial support from the Sao Paulo Research Foundation - FAPESP (Grant Nos. 2016/22007-5 and 2016/04538-3), National Council for Scientific and Technological Development – CNPq (Grant Nos. 470785/2014-4 and 404239/2016-1), and the János Bolyai Scholarship of the Hungarian Academy of Sciences. We also thank the patients and the healthy volunteers for their participation in this study.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ambati, J., & Fowler, B. J. (2012). Mechanisms of age-related macular degeneration. Neuron, 75(1), 26–39.CrossRefGoogle Scholar
  2. Amore, F. M., Paliotta, S., Silvestri, V., Piscopo, P., Turco, S., & Reibaldi, A. (2013). Biofeedback stimulation in patients with age-related macular degeneration: Comparison between 2 different methods. Canadian Journal of Ophthalmology, 48, 431–437.CrossRefGoogle Scholar
  3. Bausz, M., & Németh, J. (2006). Change in the quality of life after cataract surgery [Hun]. In S. L. Biró Zs (Ed.), The newest results of cataract and refractive surgery [Hun]. Congress of the SHIOL 2005 (pp. 53–64). Pécs: Hungarian-Artificial Lens Implantation and Refractive Surgery Society.Google Scholar
  4. Brown, P. K., & Wald, G. (1964). Visual pigments in single rods and cones of human retina—direct measurements revels mechanisms of human night and color vision. Science, 144, 45–47.CrossRefGoogle Scholar
  5. Cheung, S., & Legge, G. E. (2005). Functional and cortical adaptations to central vision loss. Visual Neuroscience, 22, 187–201.CrossRefGoogle Scholar
  6. Chuang, E. L. (1987). Management of the ageing macula. Eye, 1, 311–317.CrossRefGoogle Scholar
  7. Crossland, M. D., Culham, L. E., Kabanarou, S. A., & Rubin, G. S. (2005). Preferred retinal locus development in patients with macular disease. Ophthalmology, 112, 1579–1585.CrossRefGoogle Scholar
  8. Crossland, M. D., Engel, S. A., & Legge, G. E. (2011). Preferred retinal locus in macular disease. Toward a consensus definition. Retina, 31, 2109–2114.CrossRefGoogle Scholar
  9. Fletcher, D. C., & Schuchard, R. A. (1997). Preferred retinal loci relationship to macular scotomas in a low-vision population. Ophthalmology, 104, 632–638.CrossRefGoogle Scholar
  10. González, E. G., Tarita-Nistor, L., Markowitz, S. N., & Stainbach, M. J. (2007). Computer-based test to measure optimal visual acuity in age-related macular degeneration. Investigative Ophthalmology & Visual Science, 48, 4838–4845.CrossRefGoogle Scholar
  11. Guez, J. E., Le Gargasson, J. F., Rigaudiere, F., & O’Regan, J. K. (1993). Is there a systematic location for the pseudo-fovea in patients with central scotoma? Vision Research, 33, 1271–1279.CrossRefGoogle Scholar
  12. Harris, M. J., Robins, D., Dieter, J. M. Jr., Fine, S. L., & Guyton, D. L. (1985). Eccentric visual acuity in patients with macular disease. Ophthalmology, 92, 1550–1553.CrossRefGoogle Scholar
  13. Landa, G., Su, E., Garcia, P. M., Seiple, W. H., & Rosen, R. B. (2011). Inner segment–outer segment junctional layer integrity and corresponding retinal sensitivity in dry and wet forms of agerelated macular degeneration. Retina, 31, 364–370.CrossRefGoogle Scholar
  14. Liu, R., & Kwon, M. Y. (2016). Integrating oculomotor and perceptual training to induce a pseudofovea: A model system for studying central vision loss. Journal of Vision, 16, 10.CrossRefGoogle Scholar
  15. Martins Rosa, A., Silva, M. F., Ferreira, S., Murta, J., & Castelo-Branco, M. (2013). Plasticity in the human visual cortex: An ophthalmology-based perspective. BioMed Research International, 2013, 568354.Google Scholar
  16. Mandelcorn, M. S., Podbielski, D. W., & Mandelcorn, E. D. (2013). Fixation stability as a goal in the treatment of macular disease. Canadian Journal of Ophthalmology, 48, 364–367.CrossRefGoogle Scholar
  17. Midena, E., Angeli, C. D., Blarzino, M. C., Valenti, M., & Segato, T. (1997). Macular function impairment in eyes with early age-related macular degeneration. Investigative Ophthalmology & Visual Science, 38, 469–477.Google Scholar
  18. Midena, E., Vujosevic, S., & Cavarzeran, F., for the Microperimetry Study Group (2010). Normative agerelated database for the MP1 microperimeter. Ophthalmology., 117, 1571–1576.CrossRefGoogle Scholar
  19. Mollon, J. D., & Reffin, J. P. (1989). A computer-controlled colour vision test that combines the principles of Chibret and of Stilling. Proceedings of the Physyiological Society, vol. 414.Google Scholar
  20. Nathans, J., Thomas, D., & Hogness, D. S. (1986). Molecular genetics of human color vision: The genes encoding blue, green, and red pigments. Science, 232, 193–202.CrossRefGoogle Scholar
  21. Nilsson, U. L., Frennesson, C., & Nilsson, S. E. (1998). Location and stability of a newly established eccentric retinal locus suitable for reading, achieved through training of patients with a dense central scotoma. Optometry and Vision Science, 75, 873–878.CrossRefGoogle Scholar
  22. Nilsson, U. L., Frennesson, C., & Nilsson, S. E. (2003). Patients with AMD and a large absolute central scotoma can be trained successfully to use eccentric viewing, as demonstrated in a scanning laser ophthalmoscope. Vision Research, 43, 1777–1787.CrossRefGoogle Scholar
  23. Owsley, C., & Sloane, M. E. (1987). Contrast sensitivity, acuity, and the perception of ‘real-world’ targets. British Journal of Ophthalmology, 71, 791–796.CrossRefGoogle Scholar
  24. Peyrin, C., Ramanoel, S., Roux-Sibilon, A., Chokron, S., & Hera, R. (2017). Scene perception in age-related macular degeneration: Effect of spatial frequencies and contrast in residual vision. Vision Research, 130, 36–47.CrossRefGoogle Scholar
  25. Polyak, S. (1949). Retinal structure and color vision. In F. B. Fischer, A. J. Schaeffer, & A. Sorsby A (Eds.), Documenta Ophthalmologica: Advances in Ophthalmology. The Hague, Netherlands: Dr. W. Junk, vol. 3, p. 24Y46.Google Scholar
  26. Putnam, N. M., Hofer, H. J., Doble, N., Chen, L., Carroll, J., & Williams, D. R. (2005). The locus of fixation and foveal cone mosaic. Journal of Vision, 5, 632–639.CrossRefGoogle Scholar
  27. Rodriguez-Carmona, M. L., Harlow, J. A., Walker, G., & Barbur, J. L. (2005). The variability of normal trichromatic vision and the establishment of the “normal” range. Proceedings of 10th Congress of the International Colour Association. Granada (pp. 979–982).Google Scholar
  28. Schotter, E. R., Angele, B., & Rayner, K. (2012). Parafoveal processing in reading. Attention, Perception, & Psychophysics, 74, 5–35.CrossRefGoogle Scholar
  29. Steinberg, E. P., Tielsch, J. M., Schein, O. D., Javitt, J. C., Sharkey, P., Cassard, S. D., Legro, M. W., Diener-West, M., Bass, E. B., Damiano, A. M., et al. (1994). The VF-14. An index of functional impairment in patients with cataract. Archives of Ophthalmology, 112, 630–638.CrossRefGoogle Scholar
  30. Sunness, J. S., Schuchard, R. A., Shen, N., Rubin, G. S., Dagnelie, G., & Haselwood, M. (1995). Landmark-driven fundus perimetry using the scanning laser ophthalmoscope. Investigative Ophthalmology & Visual Science, 36, 1863–1874.Google Scholar
  31. Tarita-Nistor, L., González, E. G., Markowitz, S. N., & Steinbach, M. J. (2009). Plasticity of fixation in patients with central vision loss. Visual Neuroscience, 26(5–6), 487–494.CrossRefGoogle Scholar
  32. Thomson, L. C. (1946). Foveal colour sensitivity. Nature, 157, 805.CrossRefGoogle Scholar
  33. Ueda-Consolvo, T., Otsuka, M., Hayashi, Y., Ishida, M., & Havashi, A. (2015). Microperimetric biofeedback training improved visual acuity after successful macular hole surgery. Journal of Ophthalmology, 2015, 572942.CrossRefGoogle Scholar
  34. Vemala, R., Sivaprasad, S., & Barbur, J. L. (2017). Detection of early loss of color vision in age-related macular degeneration—with emphasis on drusen and reticular pseudodrusen. Investigative Ophthalmology & Visual Science, 58, 247–254.CrossRefGoogle Scholar
  35. Vingolo, E. M., Cavarretta, S., Domanico, D., Parisi, F., & Malagola, R. (2007). Microperimetric biofeedback in AMD patients. Appl Psychophysiol Biofeedback, 32, 185–189.CrossRefGoogle Scholar
  36. Vingolo, E. M., Salvatore, S., & Cavarretta, S. (2009). Low-vision rehabilitation by means of MP-1 biofeedback examination in patients with different macular diseases: A pilot study. Appl. Psychophysiol. Biofeedback, 34, 127–133.CrossRefGoogle Scholar
  37. Vingolo, E. M., Salvatore, S., & Limoli, P. G. (2013). MP-1 biofeedback: luminous pattern stimulus versus acoustic biofeedback in age related macular degeneration (AMD). Appl Psychophysiol Biofeedback, 38, 11–16.CrossRefGoogle Scholar
  38. Westheimer, G. (1965). Visual acuity. Annual Review of Psychology, 16, 359–380.CrossRefGoogle Scholar
  39. Westheimer, G. (1984). Spatial vision. Annual Review of Psychology, 35, 201–226.CrossRefGoogle Scholar
  40. Zeffren, B. S., Applegate, R. A., Bradley, A., & van Heuven, W. A. J. (1990). Retinal fixation point location in the foveal avascular zone. Investigative Ophthalmology & Visual Science, 31, 2099–2105.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OphthalmologySemmelweis UniversityBudapestHungary
  2. 2.Department of Experimental PsychologyUniversity of Sao PauloSao PauloBrazil
  3. 3.Bionic Innovation CenterBudapestHungary
  4. 4.Department of Mechatronics, Optics and Mechanical Engineering InformaticsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations