Advertisement

The EEG Theta/Beta Ratio: A marker of Arousal or Cognitive Processing Capacity?

  • Adam R. ClarkeEmail author
  • Robert J. Barry
  • Diana Karamacoska
  • Stuart J. Johnstone
Article
  • 66 Downloads

Abstract

Attention-Deficit/Hyperactivity Disorder (AD/HD) is the most common psychiatric disorder of childhood and has been extensively researched using EEG technology. Within this literature, one of the most widely examined measures has been the theta/beta ratio. The theta/beta ratio was initially hypothesised to represent the arousal mechanism. However, subsequent research has shown this to be inaccurate and it was hypothesised that the ratio represents cognitive processing capacity. To examine that hypothesis, this study aimed to test the relationship between the P300 and the theta/beta ratio. The P300, absolute alpha and the theta/beta ratio were measured at Fz, Cz and Pz, and correlated in a group of 47 normal adults. A significant positive correlation was found between P300 latency and the theta/beta ratio. No relationship was found between P300 amplitude and the theta/beta ratio. P300 amplitude, but not latency, significantly correlated with alpha power. These results support the hypothesis that the theta/beta ratio is a marker of cognitive processing capacity.

Keywords

EEG P300 Arousal Processing Theta/beta ratio 

Notes

Acknowledgements

This research was supported under the Australian Research Council’s Discovery funding scheme (Project Number DP0987232).

Compliance with Ethical Standards

Conflict of interest

There are no conflicts of interest to report.

References

  1. Andreassi, J. (2010). Psychophysiology, human behavior and physiological response (5th ed.). New York: Taylor & Francis group.CrossRefGoogle Scholar
  2. Barry, R., Clarke, A., & Johnstone, S. (2003a). A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clinical Neurophysiology, 114, 171–183.Google Scholar
  3. Barry, R., Johnstone, S., & Clarke, A. (2003b). A review of electrophysiology in attention-deficit/hyperactivity disorder: II. Event-related potentials. Clinical Neurophysiology, 114, 184–198.Google Scholar
  4. Barry, R., Sokolov, J., E., N (1993). Habituation of phasic and tonic components of the orienting reflex. International Journal of Psychophysiology, 15, 39–42.Google Scholar
  5. Barry, R. J., Clarke, A. R., Johnstone, S. J., McCarthy, R., & Selikowitz, M. (2009). Electroencephalogram theta/beta ratio and arousal in AD/HD: evidence of independent processes. Biological Psychiatry, 66, 398–401.CrossRefGoogle Scholar
  6. Barry, R. J., Clarke, A. R., McCarthy, R., Selikowitz, M., MacDonald, B., & Dupuy, F. E. (2012). Caffeine effects on resting-state electrodermal levels in AD/HD suggest an anomalous arousal mechanism. Biological Psychology, 89, 606–608.CrossRefGoogle Scholar
  7. Barry, R. J., Clarke, A. R., McCarthy, R., Selikowitz, M., Rushby, J. A., & Ploskova, E. (2004). EEG differences in children as a function of resting-state arousal level. Clinical Neurophysiology, 115, 402–408.Google Scholar
  8. Barry, R. J., Kirkaikul, S., & Hodder, D. (2000). EEG alpha activity and the ERP to target stimuli in an auditory oddball paradigm. International Journal of Psychophysiology, 39, 39–50.CrossRefGoogle Scholar
  9. Barry, R. J., Rushby, J. A., Wallace, M. J., Clarke, A. R., Johnstone, S. J., & Zlojutro, I. (2005). Caffeine effects on resting-state arousal. Clinical Neurophysiology, 116, 2693–2700.Google Scholar
  10. Brandt, M. E., Jansen, B. H., & Carbonari, J. P. (1991). Pre-stimulus spectral EEG patterns and the visual evoked response. Electroencephalography and Clinical Neurophysiology, 80, 16–20.Google Scholar
  11. Callaway, E., Halliday, R., & Naylor, H. (1983). Hyperactive children’s event-related potentials fail to support underarousal and maturational-lag theories. Archives of General Psychiatry, 40, 1243–1248.CrossRefGoogle Scholar
  12. Chabot, R. J., & Serfontein, G. (1996). Quantitative electroencephalographic profiles of children with attention deficit disorder. Biological Psychiatry, 40, 951–963.CrossRefGoogle Scholar
  13. Clarke, A. R., Barry, R. J., Bond, D., McCarthy, R., & Selikowitz, M. (2002a). Effects of stimulant medication on the EEG of children with attention-deficit/hyperactivity disorder. Psychopharmacology (Berl), 164, 277–284.CrossRefGoogle Scholar
  14. Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (1998). EEG analysis in attention-deficit/hyperactivity disorder: a comparative study of two subtypes. Psychiatry Research, 81, 19–29.CrossRefGoogle Scholar
  15. Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2001a). Age and sex effects in the EEG: Differences in two subtypes of attention-deficit/hyperactivity Disorder. Clinical Neurophysiology, 112, 806–814.Google Scholar
  16. Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2001b). EEG-defined subtypes of children with attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 112, 2098–2105.Google Scholar
  17. Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2001c). EEG differences in two subtypes of attention-deficit/hyperactivity disorder. Psychophysiology, 38, 212–221.CrossRefGoogle Scholar
  18. Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2002b). EEG analysis of children with attention-deficit/hyperactivity disorder and comorbid reading disabilities. Journal of Learning Disabilities, 35, 276–285.CrossRefGoogle Scholar
  19. Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2002c). Children with attention-deficit/hyperactivity disorder and comorbid oppositional defiant disorder: an EEG analysis. Psychiatry Research, 111, 181–190.CrossRefGoogle Scholar
  20. Clarke, A. R., Barry, R. J., McCarthy, R., Selikowitz, M., Brown, C., & Croft, R. (2003a). Effects of stimulant medications on the EEG of children with attention-deficit/hyperactivity disorder predominantly inattentive type. International Journal of Psychophysiology, 47, 129–137.CrossRefGoogle Scholar
  21. Clarke, A. R., Barry, R. J., McCarthy, R., Selikowitz, M., Clarke, D., & Croft, R. (2003b). EEG in girls with attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 114, 319–328.Google Scholar
  22. Clarke, A. R., Barry, R. J., McCarthy, R., Selikowitz, M., & Croft, R. (2002d). EEG differences between good and poor responders to Methylphenidate in boys with the Inattentive type of ADHD. Clinical Neurophysiology, 113, 1191–1198.Google Scholar
  23. Clarke, A. R., Barry, R. J., McCarthy, R., Selikowitz, M., & Heaven, P. (2011). Childhood EEG as a predictor of adult attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 122, 73–80.Google Scholar
  24. Clarke, A. R., Barry, R. J., McCarthy, R., Selikowitz, M., & Johnstone, S. (2007). Effects of stimulant medications on the EEG of girls with attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 118, 2700–2708.Google Scholar
  25. Clarke, A. R., Barry, R. J., McCarthy, R., Selikowitz, M., & Johnstone, S. (2008). The effects of imipramine hydrochloride on the EEG of children with attention-deficit/hyperactivity disorder. International Journal of Psychophysiology, 67, 35–40.CrossRefGoogle Scholar
  26. Clarke, A. R., Barry, R. J., McCarthy, R., Selikowitz, M., Magee, C., Johnstone, S., & Croft, R. (2006). The EEG in low IQ children with attention deficit hyperactivity disorder. Clinical Neurophysiology, 117, 1708–1714.CrossRefGoogle Scholar
  27. De Blasio, F. M., & Barry, R. J. (2013). Prestimulus alpha and beta determinants of ERP responses in the Go/NoGo task. International Journal of Psychophysiology, 89, 9–17.Google Scholar
  28. De Blasio, F. M., Barry, R. J., & Steiner, G. Z. (2013). Prestimulus EEG amplitude determinants of ERP responses in a habituation paradigm. International Journal of Psychophysiology, 89, 444–450.Google Scholar
  29. Donchin, E. (1981). Surprise!… surprise? Psychophysiology, 18, 493–513.CrossRefGoogle Scholar
  30. Duncan, C. C., Barry, R. J., Connolly, J. F., Fischer, C., Michie, P. T., Näätänen, R., Polich, J., Reinvang, I., & Van Petten, C. (2009).Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clinical Neurophysiology, 120, 1883–1908.CrossRefGoogle Scholar
  31. Duncan-Johnson, C. C., & Donchin, E. (1977). On quantifying surprise: The variation of event-related potentials with subjective probability. Psychophysiology, 14, 456–467.CrossRefGoogle Scholar
  32. Dykman, R., Holcomb, P., Oglesby, D., & Ackerman, P. (1982). Electrocortical frequencies in hyperactive, learning-disabled, mixed, and normal children. Biological Psychiatry, 17, 675–685.Google Scholar
  33. Egner, T., & Gruzelier, J. H. (2004). EEG biofeedback of low beta band components: Frequency-specific effects on variables of attention and event-related brain potentials. Clinical Neurophysiology, 115, 131–139.Google Scholar
  34. Fournier, L. R., Scheffers, M. K., Coles, M. G., Adamson, A., & Abad, E. V. (2000). When complexity helps: An electrophysiological analysis of multiple feature benefits in object perception. Acta Psychologica, 104, 119–142.CrossRefGoogle Scholar
  35. Hobbs, M. J., Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2007). EEG abnormalities in adolescent males with AD/HD. Clinical Neurophysiology, 118, 363–371.CrossRefGoogle Scholar
  36. Intrilligator, J., & Polich, J. (1995). On the relationship between EEG and ERP variability. International Journal of Psychophysiology, 20, 59–74.CrossRefGoogle Scholar
  37. Janzen, T., Graap, K., Stephanson, S., Marshall, W., & Fitzsimmons, G. (1995). Differences in baseline EEG measures for ADD and normally achieving preadolescent males. Biofeedback and Self-Regulation, 20, 65–82.CrossRefGoogle Scholar
  38. Jasikutas, P., & Hakerem, G. (1988). The effect of prestimulus alpha activity on P300. Psychophysiology, 25, 157–165.Google Scholar
  39. Jasper, H., Solomon, P., & Bradley, C. (1938). Electroencephalographic analyses of behaviour problem children. American Journal of Psychiatry, 95, 641–658.CrossRefGoogle Scholar
  40. Johnson, R. (1986). A Triarchic Model of P300: For distinguished early career contribution to psychophysiology. Psychophysiology, 23, 367–384.CrossRefGoogle Scholar
  41. Johnson, R., & Donchin, E. (1978). On how P300 amplitude varies with the utility of the eliciting stimuli. Electroencephalography and Clinical Neurophysiology, 44, 424–437.CrossRefGoogle Scholar
  42. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169–195.CrossRefGoogle Scholar
  43. Klimesch, W., Sauseng, P., Hanslmayr, S., Gruber, W., & Freunberger, R. (2007). Event-related phase reorganization may explain evoked neural dynamics. Neuroscience and Biobehavioral Reviews, 31, 1003–1016.CrossRefGoogle Scholar
  44. Kropotov, J. D., Grin-Yatsenko, V. A., Ponomarev, V. A., Chutko, L. S., Yakovenko, E. A., & Nikishena, I. S. (2005). ERPs correlates of EEG relative beta training in ADHD children. International Journal of Psychophysiology, 55, 23–34.CrossRefGoogle Scholar
  45. Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: The P300 as a measure of stimulus evaluation time. Science, 197, 792–795.CrossRefGoogle Scholar
  46. Lazzaro, I., Gordon, E., Whitmont, S., Plahn, M., Li, W., Clarke, S., Dosen, A., & Meares, R. (1998). Quantified EEG activity in adolescent attention deficit hyperactivity disorder. Clinical Electroencephalography, 29, 37–42.CrossRefGoogle Scholar
  47. Lubar, J. (1991). Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorders. Biofeedback and Self-regulation, 16, 201–225.Google Scholar
  48. Mann, C., Lubar, J. H., Zimmerman, A., Miller, C., & Munchen, R. (1992). Quantitative analysis of EEG in boys with attention deficit hyperactivity disorder: Controlled study with clinical implications. Pediatric Neurology, 8, 30–36.CrossRefGoogle Scholar
  49. McGarry-Roberts, P. A., Stelmack, R. M., & Campbell, K. B. (1992). Intelligence, reaction time, and event-related potentials. Intelligence, 16, 289–313.CrossRefGoogle Scholar
  50. Monastra, V., Lubar, J., & Linden, M. (2001). The development of a quantitative electroencephalographic scanning process for attention deficit-hyperactivity disorder: Reliability and validity studies. Neuropsychology, 15, 136–144.CrossRefGoogle Scholar
  51. Monastra, V., Lubar, J., Linden, M., VanDeusen, P., Green, G., Wing, W., Phillips, A., & Fenger, T. (1999). Assessing attention deficit hyperactivity disorder via quantitative electroencephalography: An initial validation study. Neuropsychology, 13, 424–433.CrossRefGoogle Scholar
  52. Polich, J. (1997). EEG and ERP assessment of normal aging. Electroencephalography and Clinical Neurophysiology, 104, 244–256.Google Scholar
  53. Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–2148.CrossRefGoogle Scholar
  54. Rösler, F., Sutton, S., Johnson, R. Jr., Mulder, G., Fabiani, M., Gorsel, E. P., & Roth, W. T. (1986). Endogenous ERP components and cognitive constructs. A review. Electroencephalography and Clinical Neurophysiology Supplement, 38, 51–92.Google Scholar
  55. Satterfield, J., & Dawson, M. (1971). Electrodermal correlates of hyperactivity in children. Psychophysiology, 8, 191–197.CrossRefGoogle Scholar
  56. Snyder, S. M., Quintana, H., Sexson, S. B., Knott, P., Haque, A. F., & Reynolds, D. A. (2008). Blinded, multi-center validation of EEG and rating scales in identifying ADHD within a clinical sample. Psychiatry Research, 159, 346–358.CrossRefGoogle Scholar
  57. Snyder, S. M., Rugino, T. A., Hornig, M., & Stein, M. A. (2015). Integration of an EEG biomarker with a clinician’s ADHD evaluation. Brain and Behavior, 5, e00330.CrossRefGoogle Scholar
  58. Strauß, M., Ulke, C., Paucke, M., Huang, J., Mauche, N., Sander, C., … Hegerl, U. (2018). Brain arousal regulation in adults with attention-deficit/hyperactivity disorder (ADHD). Psychiatry research, 261, 102–108.CrossRefGoogle Scholar
  59. Wangler, S., Gevensleben, H., Albrecht, B., Studer, P., Rothenberger, A., Moll, G. H., & Heinrich, H. (2011). Neurofeedback in children with ADHD: Specific event-related potential findings of a randomized controlled trial. Clinical Neurophysiology, 122, 942–950.CrossRefGoogle Scholar
  60. Zhang, D. W., Li, H., Wu, Z., Zhao, Q., Song, Y., Liu, L., … De Blasio, F. M. (2017). Electroencephalogram theta/beta ratio and spectral power correlates of executive functions in children and adolescents with AD/HD. Journal of Attention Disorders, 1087054717718263.Google Scholar
  61. Zhang, D. W., Roodenrys, S., Li, H., Barry, R. J., Clarke, A. R., Wu, Z., … Wang, Y. (2017). Atypical interference control in children with AD/HD with elevated theta/beta ratio. Biological Psychology, 128, 82–88.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Psychology and Brain & Behaviour Research InstituteUniversity of WollongongWollongongAustralia

Personalised recommendations