Advertisement

Electro-mechanical coupling wave propagating in a locally resonant piezoelectric/elastic phononic crystal nanobeam with surface effects

  • Denghui QianEmail author
Article
  • 23 Downloads

Abstract

The model of a “spring-mass” resonator periodically attached to a piezoelectric/elastic phononic crystal (PC) nanobeam with surface effects is proposed, and the corresponding calculation method of the band structures is formulized and displayed by introducing the Euler beam theory and the surface piezoelectricity theory to the plane wave expansion (PWE) method. In order to reveal the unique wave propagation characteristics of such a model, band structures of locally resonant (LR) elastic PC Euler nanobeams with and without resonators, band structures of LR piezoelectric PC Euler nanobeams with and without resonators, as well as band structures of LR elastic/piezoelectric PC Euler nanobeams with resonators attached on PZT-4, with resonators attached on epoxy, and without resonators are compared. Results demonstrate that adding resonators indeed plays an active role in opening and widening band gaps. Moreover, the influence rules of different parameters on band gaps of LR elastic/piezoelectric PC Euler nanobeams with resonators attached on epoxy are discussed, which will play an active role in the further realization of active control of wave propagations.

Key words

locally resonant (LR) piezoelectric/elastic phononic crystal (PC) nanobeam surface effect plane wave expansion (PWE) method spring-mass resonator 

Chinese Library Classification

O175.9 O34 O735 

2010 Mathematics Subject Classification

15A18 74J10 78M16 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ALMUSALLAM, A., LUO, Z. H., KOMOLAFE, A., YANG, K., ROBINSON, A., TORAH, R., and BEEBY, S. Flexible piezoelectric nano-composite films for kinetic energy harvesting from textiles. Nano Energy, 33, 146–156 (2017)CrossRefGoogle Scholar
  2. [2]
    LI, Y. D., BAO, R., and CHEN, W. Buckling of a piezoelectric nanobeam with interfacial imperfection and van der Waals force: is nonlocal effect really always dominant? Composite Structures, 194, 357–364 (2018)CrossRefGoogle Scholar
  3. [3]
    ZHANG, Y. H., HONG, J. W., LIU, B., and FANG, D. N. Strain effect on ferroelectric behaviors of BaTiO3 nanowires: a molecular dynamics study. Nanotechnology, 21(1), 015701 (2010)CrossRefGoogle Scholar
  4. [4]
    YANG, Y., GUO, W., WANG, X. Q., WANG, Z. Z., QI, J. J., and ZHANG, Y. Size dependence of dielectric constant in a single pencil-like ZnO nanowire. Nano Letters, 12(4), 1919–1922 (2012)CrossRefGoogle Scholar
  5. [5]
    AREFI, M. Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage. Applied Mathematics and Mechanics (English Edition), 37(3), 289–302 (2016)  https://doi.org/10.1007/s10483-016-2039-6 MathSciNetCrossRefGoogle Scholar
  6. [6]
    ZHOU, Y. R., YANG, X., PAN, D. M., and WANG, B. L. Improved incorporation of strain gradient elasticity in the flexoelectricity based energy harvesting from nanobeams. Physica E: Low-dimensional Systems and Nanostructures, 98, 148–158 (2018)CrossRefGoogle Scholar
  7. [7]
    ZENG, S., WANG, B. L., and WANG, K. F. Static stability analysis of nanoscale piezoelectric shells with flexoelectric effect based on couple stress theory. Microsystem Technologies, 24(7), 2957–2967 (2018)CrossRefGoogle Scholar
  8. [8]
    GURTIN, M. E. and MURDOCH, A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics & Analysis, 57(4), 291–323 (1975)MathSciNetCrossRefGoogle Scholar
  9. [9]
    MILLER, R. E. and SHENOY, V. B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 11(3), 139–147 (2000)CrossRefGoogle Scholar
  10. [10]
    HUANG, G. Y. and YU, S. W. Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Physica Status Solidi, 243(4), 22–24 (2006)CrossRefGoogle Scholar
  11. [11]
    XU, X. J., DENG, Z. C., and WANG, B. Closed solutions for the electromechanical bending and vibration of thick piezoelectric nanobeams with surface effects. Journal of Physics D: Applied Physics, 46(40), 405302 (2013)CrossRefGoogle Scholar
  12. [12]
    WANG, K. F. and WANG, B. L. Nonlinear fracture mechanics analysis of nano-scale piezoelectric double cantilever beam specimens with surface effect. European Journal of Mechanics A/Solids, 56, 12–18 (2016)MathSciNetCrossRefGoogle Scholar
  13. [13]
    YUE, Y. M., XU, K. Y., ZHANG, X. D., and WANG, W. J. Effect of surface stress and surface-induced stress on behavior of piezoelectric nanobeam. Applied Mathematics and Mechanics (English Edition), 39(7), 953–966 (2018)  https://doi.org/10.1007/s10483-018-2346-8 MathSciNetCrossRefGoogle Scholar
  14. [14]
    FANG, X. Q., ZHU, C. S., LIU, J. X., and LIU, X. L. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures. Physica B: Condensed Matter, 529, 41–56 (2018)CrossRefGoogle Scholar
  15. [15]
    MIRANDA, E. J. P., JR. and DOS SANTOS, J. M. C. Complete band gaps in nanopiezoelec-tricphononic crystals. Materials Research, 20, 15–38 (2017)CrossRefGoogle Scholar
  16. [16]
    YAN, Z., WEI, C., and ZHANG, C. Band structure calculation of SH waves in nanoscale multi-layered piezoelectric phononic crystals using radial basis function method with consideration of nonlocal interface effects. Ultrasonics, 73, 169–180 (2017)CrossRefGoogle Scholar
  17. [17]
    QIAN, D. H. Bandgap properties of a piezoelectric phononic crystal nanobeam based on nonlocal theory. Journal of Materials Science, 54(5), 4038–4048 (2019)CrossRefGoogle Scholar
  18. [18]
    WANG, Y. Z., LI, F. M., HUANG, W. H., and WANG, Y. S. Effects of inclusion shapes on the band gaps in two-dimensional piezoelectric phononic crystals. Journal of Physics: Condensed Matter, 19(49), 496204 (2007)Google Scholar
  19. [19]
    WANG, Y. Z., LI, F. M., HUANG, W. H., and WANG, Y. S. The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. Journal of the Mechanics and Physics of Solids, 56(4), 1578–1590 (2008)CrossRefGoogle Scholar
  20. [20]
    WANG, Y. Z., LI, F. M., KISHIMOTO, K., WANG, Y. S., and HUANG, W. H. Band gaps of elastic waves in three-dimensional piezoelectric phononic crystals with initial stress. European Journal of Mechanics A/Solids, 29(2), 182–189 (2010)CrossRefGoogle Scholar
  21. [21]
    JIANG, S., DAI, L. X., CHEN, H., HU, H. P., JIANG, W., and CHEN, X. D. Folding beam-type piezoelectric phononic crystal with low-frequency and broad band gap. Applied Mathematics and Mechanics (English Edition), 38(3), 411–422 (2017)  https://doi.org/10.1007/s10483-017-2171-7 MathSciNetCrossRefGoogle Scholar
  22. [22]
    NAGATY, A., MEHANEY, A., and ALY, A. H. Influence of temperature on the properties of one-dimensional piezoelectric phononic crystals. Chinese Physics B, 27(9), 346–349 (2018)CrossRefGoogle Scholar
  23. [23]
    YAN, X. J., LIU, X. P., NI, X., CHEN, Z. G., LU, M. H., and CHEN, Y. F. Reduce thermal conductivity by forming a nano-phononic crystal on a Si slab. Europhysics Letters, 106(5), 56002 (2014)CrossRefGoogle Scholar
  24. [24]
    TRAVAGLIATI, M., NARDI, D., GIANNETTI, C., GUSEV, V., PINGUE, P., PIAZZA, V., FERRINI, G., and BANFI, F. Interface nano-confined acoustic waves in polymeric surface phononic crystals. Applied Physics Letters, 106(2), 021906 (2015)CrossRefGoogle Scholar
  25. [25]
    XIAO, Y., WEN, J., and WEN, X. Flexural wave band gaps in locally resonant thin plates with periodically attached spring-mass resonators. Journal of Physics D: Applied Physics, 45(19), 195401 (2012)CrossRefGoogle Scholar
  26. [26]
    QIAN, D. H. and SHI, Z. Y. Bandgap properties in locally resonant phononic crystal double panel structures with periodically attached spring-mass resonators. Physics Letters A, 380(41), 3319–3325 (2016)CrossRefGoogle Scholar
  27. [27]
    QIAN, D. H. Bandgap properties of a piezoelectric phononic crystal nanobeam with surface effect. Journal of Applied Physics, 124(5), 055101 (2018)CrossRefGoogle Scholar
  28. [28]
    QIAN, D. H., SHI, Z. Y., NING, C. W., and WANG, J. C. Nonlinear bandgap properties in a nonlocal piezoelectric phononic crystal nanobeam. Physics Letters A, 383(25), 3101–3107 (2019)MathSciNetCrossRefGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Jiangsu Province Key Laboratory of Structure Engineering, College of Civil EngineeringSuzhou University of Science and TechnologySuzhouChina

Personalised recommendations