Advertisement

Bending of small-scale Timoshenko beams based on the integral/differential nonlocal-micropolar elasticity theory: a finite element approach

  • M. Faraji-Oskouie
  • A. Norouzzadeh
  • R. AnsariEmail author
  • H. Rouhi
Article
  • 16 Downloads

Abstract

A novel size-dependent model is developed herein to study the bending behavior of beam-type micro/nano-structures considering combined effects of nonlocality and micro-rotational degrees of freedom. To accomplish this aim, the micropolar theory is combined with the nonlocal elasticity. To consider the nonlocality, both integral (original) and differential formulations of Eringen's nonlocal theory are considered. The beams are considered to be Timoshenko-type, and the governing equations are derived in the variational form through Hamilton's principle. The relations are written in an appropriate matrix-vector representation that can be readily utilized in numerical approaches. A finite element (FE) approach is also proposed for the solution procedure. Parametric studies are conducted to show the simultaneous nonlocal and micropolar effects on the bending response of small-scale beams under different boundary conditions.

Key words

integral model of nonlocal elasticity differential model of nonlocal elasticity micropolar theory finite element (FE) analysis Timoshenko nano-beam 

Chinese Library Classification

O346 O242.21 

2010 Mathematics Subject Classification

82D80 74K10 65N30 82B31 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    WANG, K. F., KANG, B. L., BND KITAMURA, T. A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mechanica Sininica, 32, 83–100 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    ELTAHER, M. A., MHATER, M. E., MND EMAM, S. A. A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Applied Mathematical Modelling, 40, 4109–4128 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    ANSARI, R., ROROUZZADEH, A., AHAKOURI, A. H., AAZDID-VAHDATI, M., MND ROUHI, H. Finite element analysis of vibrating micro-beams and -plates using a three-dimensional micropolar element. Thin-Walled Structures, 124, 489–500 (2018)CrossRefGoogle Scholar
  4. 4.
    LI, C. A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries. Composite Structures, 118, 607–621 (2014)CrossRefGoogle Scholar
  5. 5.
    SMSK, M. and REDDY, J. N. A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory. Composite Structures, 101, 47–58 (2013)CrossRefGoogle Scholar
  6. 6.
    ANSARI, R. and NOROUZZADEH, A. Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: an isogeometric analysis. Physica E, 84, 84–97 (2016)CrossRefGoogle Scholar
  7. 7.
    MA, H. M., HAO, X. L., XND REDDY, J. N. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. Journal of Mechanics and Physics of Solids, 56(12), 3379–3391 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    FATEMI, J., JAN KEULEN, F., FND ONCK, P. Generalized continuum theories: application to stress analysis in bone. Meccanica, 37, 385–396 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    IVANOVA, E. A., ERIVTSOV, A. M., AOROZOV, N. F., NND FIRSOVA, A. D. Description of crystal packing of particles with torque interaction. Mechanics of Solids, 38, 76–88 (2003)Google Scholar
  10. 10.
    FOREST, S. and SAB, K. Cosserat overall modeling of heterogeneous materials. Mechanics Research Communications, 25, 449–454 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    YANG, J. F. C. and LAKES, R. S. Experimental study of micropolar and couple stress elasticity in compact bone in bending. Journal of Biomechanics, 15, 91–98 (1982)CrossRefGoogle Scholar
  12. 12.
    ERINGEN, A. C. Microcontinuum Field Theory, I. Foundations and Solids, Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  13. 13.
    NEFF, P. and FOREST, S. A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure: modelling, existence of minimizers, identification of moduli and computational results. Journal of Elasticity, 87(2-3), 239–276 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    ISBUGA, V. and REGUEIRO, R. A. Three-dimensional finite element analysis of finite deformation micromorphic linear isotropic elasticity. International Journal of Engineering Science, 49(12), 1326–1336 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    ANSARI, R., RAZDID-VAHDATI, M., MHAKOURI, A., AOROUZZADEH, A., and ROUHI, H. Micromorphic first-order shear deformable plate element. Meccanica, 51(8), 1797–1809 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    ANSARI, R., RAZDID-VAHDATI, M., MHAKOURI, A. H., AOROUZZADEH, A., and ROUHI, H. Micromorphic prism element. Mathematics and Mechanics of Solids, 22(6), 1438–1461 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    MINDLIN, R. D. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 16(1), 51–78 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    MINDLIN, R. D. Second gradient of strain and surface-tension in linear elasticity. International Journal of Solids and Structures, 1(4), 417–438 (1965)CrossRefGoogle Scholar
  19. 19.
    AIFANTIS, E. C. Fracture Scaling, Springer, Dordrecht, 299–314 (1999)CrossRefGoogle Scholar
  20. 20.
    YANG, F. A. C. M., CHONG, A. C. M., LAM, D. C. C., and TONG, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39(10), 2731–2743 (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    LAM, D. C., DANG, F., FHONG, A. C. M., WANG, J., JND TONG, P. Experiments and theory in strain gradient elasticity. Journal of Mechanics and Physics of Solids, 51(8), 1477–1508 (2003)CrossRefGoogle Scholar
  22. 22.
    ROQUE, C. M. C., FIDALGO, D. S., DERREIRA, A. J. M., and REDDY, J. N. A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method. Composite Structures, 96, 532–537 (2013)CrossRefGoogle Scholar
  23. 23.
    REDDY, J. N. and KIM, J. A nonlinear modified couple stress-based third-order theory of functionally graded plates. Composite Structures, 94(3), 1128–1143 (2012)CrossRefGoogle Scholar
  24. 24.
    ANSARI, R., ROROUZZADEH, A., AHOLAMI, R., RHOJAEI, M. F., MND HOSSEINZADEH, M. Size-dependent nonlinear vibration and instability of embedded fluid-conveying SWBNNTs in thermal environment. Physica E, 61, 148–157 (2014)CrossRefGoogle Scholar
  25. 25.
    REDDY, J. N. Microstructure-dependent couple stress theories of functionally graded beams. Journal of Mechanics and Physics of Solids, 59(11), 2382–2399 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    ANSARI, R., RHOLAMI, R., ROROUZZADEH, A., and Sahmani, S. Size-dependent vibration and instability of fluid-conveying functionally graded microshells based on the modified couple stress theory. Microfluidics Nanofluidics, 19(3), 509–522 (2015)CrossRefGoogle Scholar
  27. 27.
    ANSARI, R., RHOLAMI, R., RND NOROUZZADEH, A. Size-dependent thermo-mechanical vibration and instability of conveying fluid functionally graded nanoshells based on Mindlin’s strain gradient theory. Thin-Walled Structures, 105, 172–184 (2016)CrossRefGoogle Scholar
  28. 28.
    KIM, J., JUR, K. K., KND REDDY, J. N. Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Composite Structures, 209, 879–888 (2019)CrossRefGoogle Scholar
  29. 29.
    COSSERAT, E. and COSSERAT, F. Theorie des Corps Deformables, Herman, Paris (1909)zbMATHGoogle Scholar
  30. 30.
    ERINGEN, A. C. and SUHUBI, E. Nonlinear theory of simple micro-elastic solids — I. International Journal of Engineering Science, 2, 189–203 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    SUHUBI, E. and ERINGEN, A. C. Nonlinear theory of micro-elastic solids — II. International Journal of Engineering Science, 2, 389–404 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    ERINGEN, A. C. Linear Theory of Micropolar Elasticity, Springer, New York (1965)CrossRefzbMATHGoogle Scholar
  33. 33.
    ERINGEN, A. C. Linear theory of micropolar viscoelasticity. International Journal of Engineering Science, 5, 191–204 (1967)CrossRefzbMATHGoogle Scholar
  34. 34.
    ERINGEN, A. C. Theory of micropolar plates. Zeitschrift fur Angewandte Mathematik und Physik (ZAMP), 18, 12–30 (1967)CrossRefGoogle Scholar
  35. 35.
    MINDLIN, R. D. Stress functions for a Cosserat continuum. International Journal of Solids and Structures, 1, 265–271 (1965)CrossRefGoogle Scholar
  36. 36.
    ERINGEN, A. C. and KAFADAR, C. B. Continuum Physics, Vol. IV, Academic Press, New York, 1–73 (1976)CrossRefGoogle Scholar
  37. 37.
    LU, Z. J. Micropolar continuum mechanics is more profound than classical continuum mechanics. Applied Mathematics and Mechanics (English Edition), 8(10), 939–946 (1987) https://doi.org/10.1007/BF02454256CrossRefzbMATHGoogle Scholar
  38. 38.
    LUKASZEWICZ, G. Micropolar Fluids: Theory and Applications, Birkhauser, Boston (1999)CrossRefzbMATHGoogle Scholar
  39. 39.
    DYSZLEWICZ, J. Micropolar Theory of Elasticity, Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  40. 40.
    IESAN, D. Classical and Generalized Models of Elastic Rods, CRC Press, Boca Raton (2009)zbMATHGoogle Scholar
  41. 41.
    PIETRASZKIEWICZ, W. and EREMEYEV, V. A. On natural strain measures of the non-linear micropolar continuum. International Journal of Solids and Structures, 46(3-4), 774–787 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    ALTENBACH, H. and EREMEYEV, V. A. Strain rate tensors and constitutive equations of inelastic micropolar materials. International Journal of Plasticity, 63, 3–17 (2014)CrossRefGoogle Scholar
  43. 43.
    ANSARI, R., RHAKOURI, A. H., AAZDID-VAHDATI, M., MOROUZZADEH, A., and ROUHI, H. A nonclassical finite element approach for the nonlinear analysis of micropolar plates. Journal of Computational Nonlinear Dynamics, 12(1), 011019 (2017)CrossRefGoogle Scholar
  44. 44.
    KRONER, E. Elasticity theory of materials with long range cohesive forces. International Journal of Solids and Structures, 3, 731–742 (1967)CrossRefzbMATHGoogle Scholar
  45. 45.
    KRUMHANSL, J. Some Considerations of the Relation between Solid State Physics and Generalized, Continuum Mechanics, IUTAM symposia, Springer, Berlin/Heidelberg, 298–311 (1968)zbMATHGoogle Scholar
  46. 46.
    KUNIN, I. A. The Theory of Elastic Media with Microstructure and the Theory of Dislocations, IUTAM symposia, Springer, Berlin/Heidelberg, 321–329 (1968)zbMATHGoogle Scholar
  47. 47.
    ERINGEN, A. C. Nonlocal polar elastic continua. International Journal of Engineering Science, 10, 1–16 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    ERINGEN, A. C. and EDELEN, D. G. B. On nonlocal elasticity. International Journal of Engineering Science, 10, 233–248 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    ERINGEN, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54, 4703–4710 (1983)CrossRefGoogle Scholar
  50. 50.
    ZHAO, H. S., HHANG, Y., YND LIE, S. T. Frequency equations of nonlocal elastic mi- cro/nanobeams with the consideration of the surface effects. Applied Mathematics and Mechanics (English Edition), 39(8), 1089–1102 (2018) https://doi.org/10.1007/s10483-018-2358-6MathSciNetCrossRefGoogle Scholar
  51. 51.
    EBRAHIMI, F. and BARATI, M. R. Dynamic modeling of preloaded size-dependent nanocrystalline nano-structures. Applied Mathematics and Mechanics (English Edition), 38(12), 1753–1772 (2017) https://doi.org/10.1007/s10483-017-2291-8MathSciNetCrossRefGoogle Scholar
  52. 52.
    GUVEN, U. General investigation for longitudinal wave propagation under magnetic field effect via nonlocal elasticity. Applied Mathematics and Mechanics (English Edition), 36(10), 1305–1318 (2015) https://doi.org/10.1007/s10483-015-1985-9MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    LI, C. Torsional vibration of carbon nanotubes: comparison of two nonlocal models and a semicontinuum model. International Journal of Mechanical Science, 82, 25–31 (2014)CrossRefGoogle Scholar
  54. 54.
    LI, C., CI, S., SAO, L., LND ZHU, Z. Nonlocal theoretical approaches and atomistic simulations for longitudinal free vibration of nanorods/nanotubes and verification of different nonlocal models. Applied Mathematical Modelling, 39(15), 4570–4585 (2015)MathSciNetCrossRefGoogle Scholar
  55. 55.
    ANSARI, R., RHOLAMI, R., RAHMANI, S., SOROUZZADEH, A., and BAZDID-VAHDATI, M. Dynamic stability analysis of embedded multi-walled carbon nanotubes in thermal environment. Acta Mechanica Solida Sinica, 28(6), 659–667 (2015)CrossRefGoogle Scholar
  56. 56.
    SHEN, J. P. and LI, C. A semi-continuum-based bending analysis for extreme-thin micro/nano- beams and new proposal for nonlocal differential constitution. Composite Structures, 172, 210–220 (2017)CrossRefGoogle Scholar
  57. 57.
    NOROUZZADEH, A. and ANSARI, R. Isogeometric vibration analysis of functionally graded nanoplates with the consideration of nonlocal and surface effects. Thin-Walled Structures, 127, 354–372 (2018)CrossRefGoogle Scholar
  58. 58.
    CHALLAMEL, N. and WANG, C. M. The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology, 19(34), 345–703 (2008)CrossRefGoogle Scholar
  59. 59.
    NOROUZZADEH, A., ANSARI, R., RND ROUHI, H. Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach. Applied Physics A, 123, 330 (2017)CrossRefGoogle Scholar
  60. 60.
    FARAJI-OSKOUIE, M., MNSARI, R., RND ROUHI, H. Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach. Acta Mechanica Sinica, 34(5), 871–882 (2018)MathSciNetCrossRefGoogle Scholar
  61. 61.
    MAHMOUDPOUR, E., EOSSEINI-HASHEMI, S. H., SND FAGHIDIAN, S. A. Nonlinear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model. Applied Mathematical Modelling, 57, 302–315 (2018)MathSciNetCrossRefGoogle Scholar
  62. 62.
    FARAJI-OSKOUIE, M., MNSARI, R., RND ROUHI, H. A numerical study on the buckling and vibration of nanobeams based on the strain- and stress-driven nonlocal integral models. International Journal of Computational Materials Science and Engineering, 7, 1850016 (2018)CrossRefGoogle Scholar
  63. 63.
    NOROUZZADEH, A., ANSARI, R., RND ROUHI, H. Isogeometric vibration analysis of small-scale Timoshenko beams based on the most comprehensive size-dependent theory. Scientia Iranica, 25, 1864–1878 (2018)Google Scholar
  64. 64.
    NOROUZZADEH, A. and ANSARI, R. Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Physica E, 88, 194–200 (2017)CrossRefGoogle Scholar
  65. 65.
    FERNANDEZ-SAEZ, J., JAERA, R., ROYA, J. A., JND REDDY, J. N. Bending of Euler-Bernoulli beams using Eringen’s integral formulation: a paradox resolved. International Journal of Engineering Science, 99, 107–116 (2016)MathSciNetCrossRefGoogle Scholar
  66. 66.
    ROMANO, G., GARRETA, R., RND DIACO, M. On nonlocal integral models for elastic nanobeams. International Journal of Mechanical Science, 131, 490–499 (2017)CrossRefGoogle Scholar
  67. 67.
    MAHMOUD, F. F. On the nonexistence of a feasible solution in the context of the differential form of Eringen’s constitutive model: a proposed iterative model based on a residual nonlocality formulation. International Journal of Applied Mechanics, 9(7), 1750094 (2017)MathSciNetCrossRefGoogle Scholar
  68. 68.
    ANSARI, R., RORABI, J., JND NOROUZZADEH, A. Bending analysis of embedded nanoplates based on the integral formulation of Eringen’s nonlocal theory using the finite element method. Physica B, 534, 90–97 (2018)CrossRefGoogle Scholar
  69. 69.
    NOROUZZADEH, A., ANSARI, R., RND ROUHI, H. Isogeometric analysis of Mindlin nanoplates based on the integral formulation of nonlocal elasticity. Multidiscipline Modeling in Materials and Structures, 14(5), 810–827 (2018)CrossRefGoogle Scholar
  70. 70.
    LAKES, R. Experimental microelasticity of two porous solids. International Journal of Solids and, Structures, 22, 55–63 (1986)CrossRefGoogle Scholar
  71. 71.
    LI, L. and HU, Y. Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. International Journal of Engineering Science, 107, 77–97 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    XU, X. J., XANG, X. C., XHENG, M. L., MND MA, Z. Bending and buckling of nonlocal strain gradient elastic beams. Composite Structures, 160, 366–377 (2017)CrossRefGoogle Scholar
  73. 73.
    NOROUZZADEH, A., ANSARI, R., RND ROUHI, H. Nonlinear wave propagation analysis in Timoshenko nano-beams considering nonlocal and strain gradient effects. Meccanica, 53(13), 3415–3435 (2018)MathSciNetCrossRefGoogle Scholar
  74. 74.
    NOROUZZADEH, A., ANSARI, R., RND ROUHI, H. Nonlinear bending analysis of nanobeams based on the nonlocal strain gradient model using an isogeometric finite element approach. Iranian Journal of Science and Technology, Transactions of Civil Engineering), 1–15 (2018) https://doi.org/10.1007/s40996-018-0184-2Google Scholar

Copyright information

© Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Faraji-Oskouie
    • 1
  • A. Norouzzadeh
    • 1
  • R. Ansari
    • 1
    Email author
  • H. Rouhi
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of GuilanRashtIran
  2. 2.Department of Engineering ScienceFaculty of Technology and Engineering, University of GuilanRudsar-VajargahIran

Personalised recommendations