Advertisement

Applied Mathematics and Mechanics

, Volume 40, Issue 1, pp 1–12 | Cite as

Numerical and experimental research of flow control on an NACA 0012 airfoil by local vibration

  • Bin Lou
  • Shangjun Ye
  • Gaofeng Wang
  • Zhilong Huang
Article
  • 49 Downloads

Abstract

A flow control technique by local vibration is proposed to improve the aerodynamic performance of a typical airfoil NACA 0012. Both wind-tunnel experiments and a large eddy simulation (LES) are carried out to study the effects of local vibration on drag reduction over a wide range of angles of attack. The application parameters of local vibration on the upper surface of the airfoil are first evaluated by numerical simulations. The mounted position is chosen at 0.065–0.09 of chord length from the leading edge. The influence of oscillation frequency is investigated both by numerical simulations and experiments. The optimal frequencies are near the dominant frequencies of shear layer vortices and wake vortices. The patterns of shear vortices caused by local vibration are also studied to determine the drag reduction mechanism of this flow control method. The results indicate that local vibration can improve the aerodynamic performance of the airfoil. In particular, it can reduce the drag by changing the vortex generation patterns.

Key words

local vibration airfoil vortex control drag reduction 

Nomenclature

x

coordinate along the length of the airfoil

±yt

thickness coordinates above and below the line extending along the length of the airfoil

h

maximum thickness of the airfoil

c

chord of the airfoil

yv

vertical position coordinate of the vibrating part

A

amplitude of vibration

t

time of vibration

p1

horizontal coordinate of the front end on the vibrating part

p2

horizontal coordinate of the back end on the vibrating part

CL

airfoil lift coefficient

CD

airfoil drag coefficient

f

frequency of vibration

Chinese Library Classification

O357.5 

2010 Mathematics Subject Classification

76F70 

References

  1. [1]
    WILLIAMS, J. A brief history of British research on boundary layer control for high lift. Boundary Layer Control, Pergamon Press, Oxford, 74–103 (1961)Google Scholar
  2. [2]
    HEAD, M. R. History of research on boundary layer control for low drag in UK. Boundary Layer and Flow Control, Pergamon Press, Oxford, 104–121 (1961)Google Scholar
  3. [3]
    FLATT, J. The history of boundary layer control research in the United States of America. Boundary Layer and Flow Control, Pergamon Press, Oxford, 122–143 (1961)Google Scholar
  4. [4]
    WEIBERG, J. A. and DANNENBERG, R. E. Section characteristics of an NACA 0006 airfoil with area suction near the leading edge. NACA Technical Note, National Advisory Committee for Aeronautics, Washington, D.C., 1–47 (1954)Google Scholar
  5. [5]
    HUANG, L., HUANG, P. G., LEBEAU, R. P., and HAUSER, T. Numerical study of blowing and suction control mechanism on NACA 0012 airfoil. Journal of Aircraft, 41(5), 1005–1013 (2004)CrossRefGoogle Scholar
  6. [6]
    CORKE, T. C. and POST, M. L. Overview of plasma flow control: concepts, optimization, and applications. 43rd AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, Nevada, 578–563 (2005)Google Scholar
  7. [7]
    CORKE, T. C., MERTZ, B., and PATEL, M. P. Plasma flow control optimized airfoil. 44th AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reno, Nevada, 1208–1221 (2006)Google Scholar
  8. [8]
    POST, M. L. and CORKE, T. C. Separation control using plasma actuators: dynamic stall vortex control on oscillating airfoil. AIAA Journal, 44(12), 3125–3135 (2006)CrossRefGoogle Scholar
  9. [9]
    SUZEN, Y. B., HUANG, P. G., JACOB, J. D., and ASHPIS, D. E. Numerical simulations of plasma based flow control applications. 35th AIAA Fluid Dynamics Conference and Exhibit, American Institute of Aeronautics and Astronautics, Toronto, 4633–4644 (2005)Google Scholar
  10. [10]
    HASSAN, A. A. and JANAKIRAM, R. D. Effects of zero-mass “synthetic” jets on the aerodynamics of the NACA-0012 airfoil. Journal of the American Helicopter Society, 43(4), 303–311 (1998)CrossRefGoogle Scholar
  11. [11]
    RIZZETTA, D. P., VISBAL, M. R., and STANEK, M. J. Numerical investigation of synthetic-jet flow fields. AIAA Journal, 37(8), 919–927 (1999)CrossRefGoogle Scholar
  12. [12]
    AMITAY, M., SMITH, D. R., KIBENS, V., PAREKH, D. E., and GLEZER, A. Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA Journal, 39(3), 361–370 (2001)CrossRefGoogle Scholar
  13. [13]
    ZHANG, P., WANG, J., and FENG, L. Review of zero-net-mass-flux jet and its application in separation flow control. Science in China Series E: Technological Sciences, 51(9), 1315–1344 (2008)CrossRefGoogle Scholar
  14. [14]
    RAJU, R., MITTAL, R., and CATTAFESTA, L. Dynamics of airfoil separation control using zero-net mass-flux forcing. AIAA Journal, 46(12), 3103–3115 (2008)CrossRefGoogle Scholar
  15. [15]
    SEIFERT, A., DARABI, A., and WYGANSKI, I. Delay of airfoil stall by periodic excitation. Journal of Aircraft, 33(4), 691–698 (1996)CrossRefGoogle Scholar
  16. [16]
    SEIFERT, A., ELIAHU, S., GREENBLATT, D., and WYGNANSKI, I. Use of piezoelectric actuators for airfoil separation control. AIAA Journal, 36(8), 1535–1537 (1998)CrossRefGoogle Scholar
  17. [17]
    HSIAO, F. B., LIANG, P. F., and HUANG, C. Y. High-incidence airfoil aerodynamics improvement by leading-edge oscillating flap. Journal of Aircraft, 35(3), 508–510 (1998)CrossRefGoogle Scholar
  18. [18]
    SINHA, S. K. Flow separation control with microflexural wall vibrations. Journal of Aircraft, 38(3), 496–503 (2001)CrossRefGoogle Scholar
  19. [19]
    KANG, W., ZHANG, J., LEI, P., and XU, M. Computation of unsteady viscous flow around a locally flexible airfoil at low Reynolds number. Journal of Fluids and Structures, 46, 42–58 (2014)CrossRefGoogle Scholar
  20. [20]
    KANG, W., ZHANG, J., and FENG, P. Aerodynamic analysis of a localized flexible airfoil at low Reynolds numbers. Communications in Computational Physics, 11(4), 1300–1310 (2012)CrossRefzbMATHGoogle Scholar
  21. [21]
    YARUSEVYCH, S., KAWALL, J. G., and SULLIVAN, P. E. Airfoil performance at low Reynolds numbers in the presence of periodic disturbances. Journal of Fluids Engineering, 128(3), 587–595 (2006)CrossRefGoogle Scholar
  22. [22]
    TANI, I. Low-speed flows involving bubble separations. Progress in Aerospace Sciences, 5, 71–103 (1964)CrossRefGoogle Scholar
  23. [23]
    LIN, J. and PAULEY, L. L. Low-Reynolds-number separation on an airfoil. AIAA Journal, 34(8), 1570–1577 (1996)CrossRefzbMATHGoogle Scholar
  24. [24]
    YARUSEVYCH, S., SULLIVAN, P. E., and KAWALL, J. G. On vortex shedding from an airfoil in low-Reynolds-number flows. Journal of Fluid Mechanics, 632, 245–271 (2009)CrossRefzbMATHGoogle Scholar
  25. [25]
    YARUSEVYCH, S., SULLIVAN, P. E., and KAWALL, J. G. Coherent structures in an airfoil boundary layer and wake at low Reynolds numbers. Physics of Fluids, 18(4), 44101 (2006)CrossRefGoogle Scholar
  26. [26]
    YARUSEVYCH, S. and BOUTILIER, M. S. H. Vortex shedding of an airfoil at low Reynolds numbers. AIAA Journal, 49(10), 2221–2227 (2011)CrossRefGoogle Scholar
  27. [27]
    LADSON, C. L., BROOKS, C. W., JR, HILL, A. S., and SPROLES, D. W. Computer program to obtain ordinates for NACA airfoils. NASA Technical Memorandum, National Aeronautics and Space Administration, Hampton, Virginia, 1–27 (1996)Google Scholar
  28. [28]
    VERSTEEG, H. K. and MALALASEKERA, W. An Introduction to Computational Fluid Dynamics: the Finite Volume Method, 2nd ed., Pearson Education, London, 40–113 (2007)Google Scholar
  29. [29]
    WONG, C. and KONTIS, K. Flow control by spanwise blowing on a NACA 0012. Journal of Aircraft, 44(1), 337–340 (2007)CrossRefGoogle Scholar
  30. [30]
    YUAN, W., XU, H., KHALID, M., and RADESPIEL, R. A parametric study of LES on laminarturbulent transitional flows past an airfoil. International Journal of Computational Fluid, 20(1), 45–54 (2006)CrossRefzbMATHGoogle Scholar
  31. [31]
    LISSAMAN, P. B. S. Low-Reynolds-number airfoils. Annual Review of Fluid Mechanics, 15(1), 223–239 (2003)CrossRefzbMATHGoogle Scholar
  32. [32]
    MALKIEL, E. and MAYLE, R. E. Transition in a separation bubble. 40th International Gas Turbine and Aeroengine Congress and Exposition, American Society of Mechanical Engineers, Houston, Texas, 752–759 (1995)Google Scholar
  33. [33]
    MUNDAY, D. and JACOB, J. Active control of separation on a wing with oscillating camber. Journal of Aircraft, 39(1), 187–189 (2002)CrossRefGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bin Lou
    • 1
  • Shangjun Ye
    • 1
  • Gaofeng Wang
    • 1
  • Zhilong Huang
    • 1
  1. 1.School of Aeronautics and AstronauticsZhejiang UniversityHangzhouChina

Personalised recommendations