Advertisement

Applied Mathematics and Mechanics

, Volume 39, Issue 11, pp 1679–1690 | Cite as

Optimization of a global seventh-order dissipative compact finite-difference scheme by a genetic algorithm

  • Yu Lin
  • Yaming Chen
  • Chuanfu Xu
  • Xiaogang Deng
Article
  • 22 Downloads

Abstract

A global seventh-order dissipative compact finite-difference scheme is optimized in terms of time stability. The dissipative parameters appearing in the boundary closures are assumed to be different, resulting in an optimization problem with several parameters determined by applying a generic algorithm. The optimized schemes are analyzed carefully from the aspects of the eigenvalue distribution, the ε-pseudospectra, the short time behavior, and the Fourier analysis. Numerical experiments for the Euler equations are used to show the effectiveness of the final recommended scheme.

Key words

high-order dissipative compact finite-difference scheme genetic algorithm time stable 

Chinese Library Classification

O241 

2010 Mathematics Subject Classification

76M20 93D20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    RIZZETTA, D. P., VISBAL, M. R., and MORGAN, P. E. A high-order compact finite-difference scheme for large-eddy simulation of active flow control. Progress in Aerospace Sciences, 44, 397–426 (2008)CrossRefGoogle Scholar
  2. [2]
    JOHNSEN, E., LARSSON, J., BHAGATWALA, A. V., CABOT, W. H., and MOIN, P. Assess-ment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. Journal of Computational Physics, 229, 1213–1237 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    KAWAI, S., SHANKAR, S. K., and LELE, S. K. Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows. Journal of Computational Physics, 229, 1739–1762 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    NAGARAJAN, S., LELE, S. K., and FERZIGER, J. H. A robust high-order compact method for large eddy simulation. Journal of Computational Physics, 191, 392–419 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    LAMBALLAIS, E., FORTUNÉ, V., and LAIZET, S. Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation. Journal of Computational Physics, 230, 3270–3275 (2011)CrossRefzbMATHGoogle Scholar
  6. [6]
    COOK, A. W. and RILEY, J. J. Direct numerical simulation of a turbulent reactive plume on parallel computer. Journal of Computational Physics, 129, 263–283 (1996)CrossRefzbMATHGoogle Scholar
  7. [7]
    SUN, Z. S., REN, Y. X., LARRICQ, C., ZHANG, S. Y., and YANG, Y. C. A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence. Journal of Computational Physics, 230, 4616–4635 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    GHOSAL, S. An analysis of numerical errors in large-eddy simulations of turbulence. Journal of Computational Physics, 125, 187–206 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    ROECK, W., DESMET, W., BAELMANS, M., and SAS, P. An overview of high-order finite difference schemes for computational aeroacoustics. Proceedings of the International Conference on Noise and Vibration Engineering, Katholieke Universiteit Leuven, 353–368 (2004)Google Scholar
  10. [10]
    SESCU, A., HIXON, R., and AFJEH, A. A. Multidimensional optimization of finite difference schemes for computational aeroacoustics. Journal of Computational Physics, 227, 4563–4588 (2008)CrossRefzbMATHGoogle Scholar
  11. [11]
    KIM, J. W. Optimised boundary compact finite difference schemes for computational aeroacous-tics. Journal of Computational Physics, 225, 995–1019 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    TAOVE, A. and HAGNESS, S. C. Computational Electrodynamics: the Finite-Difference Time-Domain Method, Artech House, London (2005)Google Scholar
  13. [13]
    BRIO, M. and WU, C. C. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. Journal of Computational Physics, 75, 400–422 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    CARPENTER, M. H., GOTTLIEB, D., and ABARBANEL, S. The stability of numerical boundary treatments for compact high-order finite-difference schemes. Journal of Computational Physics, 108, 272–295 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    DENG, X. G., JIANG, Y., MAO, M. L., LIU, H. Y., LI, S., and TU, G. H. A family of hybrid cell-edge and cell-node dissipative compact schemes satisfying geometric conservation law. Computers and Fluids, 116, 29–45 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    JIANG, Y., MAO, M. L., DENG, X. G., and LIU, H. Y. Large eddy simulation on curvilinear meshes using seventh-order dissipative compact scheme. Computers and Fluids, 104, 73–84 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    JIANG, Y., MAO, M. L., DENG, X. G., and LIU, H. Y. Numerical investigation on body-wake ow interaction over rod-airfoil configuration. Journal of Fluid Mechanics, 779, 1–35 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    GUSTAFSSON, B. The convergence rate for difference approximations to mixed initial boundary value problems. Mathematics of Computation, 29, 396–406 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    DENG, X. G., CHEN, Y. M., XU, D., and WANG, G. X. A novel boundary treatment method for global seventh-order dissipative compact finite-difference scheme. 23rd AIAA Computational Fluid Dynamics Conference, Denver, Colorado, AIAA 2017-4497 (2017)Google Scholar
  20. [20]
    HAUPT, R. L. and HAUPT, S. E. Practical Genetic Algorithms, John Wiley and Sons, Hoboken (2004)zbMATHGoogle Scholar
  21. [21]
    TURNER, J. M., HAERI, S., and KIM, J. W. Improving the boundary efficiency of a compact finite difference scheme through optimising its composite template. Computers and Fluids, 138, 9–25 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    BREHM, C. On consistent boundary closures for compact finite-difference weno schemes. Journal of Computational Physics, 334, 573–581 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    TREFETHEN, L. N. Spectra and pseudospectra. Springer Series in Computational Mathematics, 26, 217–249 (1999)CrossRefzbMATHGoogle Scholar
  24. [24]
    TREFETHEN, L. N. Pseudospectra of matrices. Numerical Analysis, 91, 234–266 (1991)zbMATHGoogle Scholar
  25. [25]
    TREFETHEN, L. N., TREFETHEN, A. E., REDDY, S. C., and DRISCOLL, T. A. Hydrodynamic stability without eigenvalues. Science, 261, 578–584 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    ROE, P. L. Approximate riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43, 357–372 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    KATATE MASATSUKA. I Do Like CFD, Katate Masatsuka, California (2013)Google Scholar
  28. [28]
    GOTTLIEB, S. and SHU, C. W. Total variation diminishing Runge-Kutta schemes. Mathematics of Computation, 67, 73–85 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yu Lin
    • 1
  • Yaming Chen
    • 2
  • Chuanfu Xu
    • 1
    • 3
  • Xiaogang Deng
    • 2
  1. 1.College of ComputerNational University of Defense TechnologyChangshaChina
  2. 2.College of Aerospace Science and EngineeringNational University of Defense TechnologyChangshaChina
  3. 3.State Key Laboratory of High Performance ComputingNational University of Defense TechnologyChangshaChina

Personalised recommendations