Advertisement

Alienimonas californiensis gen. nov. sp. nov., a novel Planctomycete isolated from the kelp forest in Monterey Bay

  • Alje S. Boersma
  • Nicolai Kallscheuer
  • Sandra Wiegand
  • Patrick Rast
  • Stijn H. Peeters
  • Rob J. Mesman
  • Anja Heuer
  • Christian Boedeker
  • Mike S. M. Jetten
  • Manfred Rohde
  • Mareike Jogler
  • Christian JoglerEmail author
Original Paper

Abstract

Planctomycetes are environmentally and biotechnologically important bacteria and are often found in association with nutrient-rich (marine) surfaces. To allow a more comprehensive understanding of planctomycetal lifestyle and physiology we aimed at expanding the collection of axenic cultures with new isolates. Here, we describe the isolation and genomic and physiological characterisation of strain CA12T obtained from giant bladder kelp (Macrocystis pyrifera) in Monterey Bay, California, USA. 16S rRNA gene sequence and whole genome-based phylogenetic analysis showed that strain CA12T clusters within the family Planctomycetaceae and that it has a high 16S rRNA sequence similarity (82.3%) to Planctomicrobium piriforme DSM 26348T. The genome of strain CA12T has a length of 5,475,215 bp and a G+C content of 70.1%. The highest growth rates were observed at 27 °C and pH 7.5. Using different microscopic methods, we could show that CA12T is able to divide by consecutive polar budding, without completing a characteristic planctomycetal lifestyle switch. Based on our data, we suggest that the isolated strain represents a novel species within a novel genus. We thus propose the name Alienimonas gen. nov. with Alienimonas californiensis sp. nov. as type species of the novel genus and CA12T as type strain of the novel species.

Keywords

Cell division Marine bacteria Planctomycetes Primary metabolism Carbohydrate active enzymes 

Notes

Acknowledgements

We thank Anne-Kristin Kaster (KIT Karlsruhe, Germany) and Alfred M. Spormann (Stanford, USA) as well as the Aquarius Dive Shop Monterey and the Hopkins Marine Station for sampling support. We further thank Ina Schleicher for excellent SEM sample preparation and skillful technical assistance and the General Instrumentation department at Radboud University for help during the TEM analyses. For their support during strain deposition we thank the BCCM/LMG bacteria collection and Brian Tindall and Regine Fähnrich from the DSMZ.

Author contributions

ASB performed cultivations and wrote the manuscript; NK contributed to preparation of the text, analyzed the data and prepared the figures; SW and MJ performed the genomic and phylogenetic analysis; PR and AH isolated the strain and performed the initial strain cultivation and deposition; SHP and CB performed the light microscopic analysis; RJM performed the transmission electron microscopy; MSMJ contributed to text preparation and revised the manuscript; MR performed the electron microscopic analysis; CJ and MJ took the samples in Monterey Bay, CA; CJ supervised the study and all authors read and approved the final version of the manuscript.

Funding

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) grants KA 4967/1-1 and JO 893/4-1, and by the grant ALWOP.308 of the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with animals performed by any of the authors.

Supplementary material

10482_2019_1367_MOESM1_ESM.docx (2.6 mb)
Supplementary material 1 (DOCX 2656 kb)
10482_2019_1367_MOESM2_ESM.avi (1.3 mb)
Supplementary material 2 (AVI 1282 kb)

References

  1. Acehan D, Santarella-Mellwig R, Devos DP (2014) A bacterial tubulovesicular network. J Cell Sci 127:277–280PubMedCrossRefGoogle Scholar
  2. Bauld J, Staley JT (1976) Planctomyces maris sp. nov.: a marine isolate of the Planctomyces-Blastocaulis group of budding bacteria. J Gen Microbiol 97:45–55CrossRefGoogle Scholar
  3. Bengtsson MM, Øvreås L (2010) Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol 10:261PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bengtsson MM, Sjøtun K, Lanzén A, Øvreås L (2012) Bacterial diversity in relation to secondary production and succession on surfaces of the kelp Laminaria hyperborea. ISME J 6:2188PubMedPubMedCentralCrossRefGoogle Scholar
  5. Boedeker C, Schüler M, Reintjes G, Jeske O, van Teeseling MC, Jogler M, Rast P, Borchert D, Devos DP, Kucklick M (2017) Determining the bacterial cell biology of Planctomycetes. Nat Commun 8:14853PubMedPubMedCentralGoogle Scholar
  6. Bondoso J, Harder J, Lage OM (2013) rpoB gene as a novel molecular marker to infer phylogeny in Planctomycetales. Antonie Van Leeuwenhoek 104:477–488CrossRefGoogle Scholar
  7. Bondoso J, Balagué V, Gasol JM, Lage OM (2014a) Community composition of the Planctomycetes associated with different macroalgae. FEMS Microbiol Ecol 88:445–456CrossRefGoogle Scholar
  8. Bondoso J, Albuquerque L, Lobo-da-Cunha A, Da Costa MS, Harder J, Lage OM (2014b) Rhodopirellula lusitana sp. nov. and Rhodopirellula rubra sp. nov., isolated from the surface of macroalgae. Syst Appl Microbiol 37:157–164PubMedCrossRefGoogle Scholar
  9. Bondoso J, Albuquerque L, Nobre MF, Lobo-da-Cunha A, da Costa MS, Lage OM (2015) Roseimaritima ulvae gen. nov., sp. nov. and Rubripirellula obstinata gen. nov., sp. nov. two novel Planctomycetes isolated from the epiphytic community of macroalgae. Syst Appl Microbiol 38:8–15Google Scholar
  10. Bondoso J, Godoy-Vitorino F, Balagué V, Gasol JM, Harder J, Lage OM (2017) Epiphytic Planctomycetes communities associated with three main groups of macroalgae. FEMS Microbiol Ecol 93:fiw255Google Scholar
  11. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedPubMedCentralGoogle Scholar
  12. Devos DP (2014a) PVC bacteria: variation of, but not exception to, the Gram-negative cell plan. Trends Microbiol 22:14–20PubMedCrossRefPubMedCentralGoogle Scholar
  13. Devos DP (2014b) Re-interpretation of the evidence for the PVC cell plan supports a Gram-negative origin. Antonie Van Leeuwenhoek 105:271–274PubMedPubMedCentralCrossRefGoogle Scholar
  14. Devos DP, Jogler C, Fuerst JA (2013) The 1st EMBO workshop on PVC bacteria-Planctomycetes-Verrucomicrobia-Chlamydiae superphylum: exceptions to the bacterial definition? Antonie Van Leeuwenhoek 104:443–449PubMedCrossRefPubMedCentralGoogle Scholar
  15. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedPubMedCentralCrossRefGoogle Scholar
  16. Frank O, Michael V, Pauker O, Boedeker C, Jogler C, Rohde M, Petersen J (2015) Plasmid curing and the loss of grip—the 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae. Syst Appl Microbiol 38:120–127PubMedCrossRefPubMedCentralGoogle Scholar
  17. Fuerst JA, Sagulenko E (2011) Beyond the bacterium: Planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9:403PubMedCrossRefPubMedCentralGoogle Scholar
  18. Fuerst JA, Webb RI (1991) Membrane-bounded nucleoid in the eubacterium Gemmatata obscuriglobus. Proc Natl Acad Sci USA 88:8184–8188PubMedPubMedCentralCrossRefGoogle Scholar
  19. Fukunaga Y, Kurahashi M, Sakiyama Y, Ohuchi M, Yokota A, Harayama S (2009) Phycisphaera mikurensis gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaerae classis nov. in the phylum Planctomycetes. J Gen Appl Microbiol 55:267–275PubMedCrossRefPubMedCentralGoogle Scholar
  20. Giovannoni S, Schabtach E, Castenholz RW (1987) Isosphaera pallida, gen. and comb. nov., a gliding, budding eubacterium from hot springs. Arch Microbiol 147:276–284CrossRefGoogle Scholar
  21. Graca AP, Calisto R, Lage OM (2016) Planctomycetes as novel source of bioactive molecules. Front Microbiol 7:16CrossRefGoogle Scholar
  22. Jeske O, Jogler M, Petersen J, Sikorski J, Jogler C (2013) From genome mining to phenotypic microarrays: Planctomycetes as source for novel bioactive molecules. Antonie Van Leeuwenhoek 104:551–567PubMedPubMedCentralCrossRefGoogle Scholar
  23. Jeske O, Schüler M, Schumann P, Schneider A, Boedeker C, Jogler M, Bollschweiler D, Rohde M, Mayer C, Engelhardt H (2015) Planctomycetes do possess a peptidoglycan cell wall. Nat Commun 6:7116PubMedPubMedCentralCrossRefGoogle Scholar
  24. Jeske O, Surup F, Ketteniß M, Rast P, Förster B, Jogler M, Wink J, Jogler C (2016) Developing techniques for the utilization of Planctomycetes as producers of bioactive molecules. Front Microbiol 7:1242PubMedPubMedCentralCrossRefGoogle Scholar
  25. Jogler C (2014) The bacterial ‘mitochondrium’. Mol Microbiol 94:751–755CrossRefGoogle Scholar
  26. Jogler C, Glockner FO, Kolter R (2011) Characterization of Planctomyces limnophilus and development of genetic tools for its manipulation establish it as a model species for the phylum Planctomycetes. Appl Envrion Microbiol 77:5826–5829CrossRefGoogle Scholar
  27. Kallscheuer N, Jogler M, Wiegand S, Peeters S, Heuer A, Boedeker C, Jetten MSM, Rohde M, Jogler C (2019a) Rubinisphaera italica sp. nov. isolated from a hydrothermal area in the Tyrrhenian Sea close to the volcanic island Panarea. Antonie Van Leeuwenhoek.  https://doi.org/10.1007/s10482-019-01329-w CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kallscheuer N, Moreira C, Airs R, Llewellyn CA, Wiegand S, Jogler C, Lage OM (2019b) Pink-and orange-pigmented Planctomycetes produce saproxanthin-type carotenoids including a rare C45 carotenoid. Environ Microbiol Rep 11:741–748Google Scholar
  29. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351Google Scholar
  30. Kohn T, Heuer A, Jogler M et al (2016) Fuerstia marisgermanicae gen. nov., sp nov., an unusual member of the phylum Planctomycetes from the German Wadden Sea. Front Microbiol 7:15CrossRefGoogle Scholar
  31. Kohn T, Wiegand S, Boedeker C, Rast P, Heuer A, Jetten MSM, Schüler M, Becker S, Rohde C, Müller R-W, Brümmer F, Rohde M, Engelhardt H, Jogler M, Jogler C (2019) Planctopirus ephydatiae, a novel Planctomycete isolated from a freshwater sponge. Syst Appl Microbiol.  https://doi.org/10.1016/j.syapm.2019.126022 CrossRefGoogle Scholar
  32. König E, Schlesner H, Hirsch P (1984) Cell wall studies on budding bacteria of the Planctomyces/Pasteuria group and on a Prosthecomicrobium sp. Arch Microbiol 138:200–205Google Scholar
  33. Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kovaleva O, Merkel AY, Novikov A, Baslerov R, Toshchakov S, Bonch-Osmolovskaya E (2015) Tepidisphaera mucosa gen. nov., sp. nov., a moderately thermophilic member of the class Phycisphaerae in the phylum Planctomycetes, and proposal of a new family, Tepidisphaeraceae fam. nov., and a new order, Tepidisphaerales ord. nov. Int J Syst Evol Microbiol 65:549–555PubMedCrossRefPubMedCentralGoogle Scholar
  35. Kulichevskaya IS, Ivanova AO, Baulina OI, Bodelier PL, Damste JSS, Dedysh SN (2008) Singulisphaera acidiphila gen. nov., sp. nov., a non-filamentous, Isosphaera-like Planctomycete from acidic northern wetlands. Int J Syst Evol Microbiol 58:1186–1193PubMedCrossRefPubMedCentralGoogle Scholar
  36. Kulichevskaya IS, Ivanova AA, Detkova EN, Rijpstra WI, Sinninghe Damste JS, Dedysh SN (2015) Planctomicrobium piriforme gen. nov., sp. nov., a stalked Planctomycete from a littoral wetland of a boreal lake. Int J Syst Evol Microbiol 65:1659–1665PubMedCrossRefPubMedCentralGoogle Scholar
  37. Kulichevskaya IS, Ivanova AA, Suzina NE, Rijpstra WIC, Damste JSS, Dedysh SN (2016) Paludisphaera borealis gen. nov., sp. nov., a hydrolytic Planctomycete from northern wetlands, and proposal of Isosphaeraceae fam. nov. Int J Syst Evol Microbiol 66:837–844PubMedCrossRefPubMedCentralGoogle Scholar
  38. Kulichevskaya IS, Ivanova AA, Baulina OI, Rijpstra WIC, Damsté JSS, Dedysh SN (2017) Fimbriiglobus ruber gen. nov., sp. nov., a Gemmata-like Planctomycete from Sphagnum peat bog and the proposal of Gemmataceae fam. nov. Int J Syst Evol Microbiol 67:218–224PubMedCrossRefPubMedCentralGoogle Scholar
  39. Lachnit T, Fischer M, Kunzel S, Baines JF, Harder T (2013) Compounds associated with algal surfaces mediate epiphytic colonization of the marine macroalga Fucus vesiculosus. FEMS Microbiol Ecol 84:411–420PubMedCrossRefPubMedCentralGoogle Scholar
  40. Lage OM, Bondoso J (2014) Planctomycetes and macroalgae, a striking association. Front Microbiol 5:267PubMedPubMedCentralCrossRefGoogle Scholar
  41. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ (2011) Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinform 12:124CrossRefGoogle Scholar
  42. Lindsay MR, Webb RI, Fuerst JA (1997) Pirellulosomes: a new type of membrane-bounded cell compartment in Planctomycete bacteria of the genus Pirellula. Microbiology-UK 143:739–748CrossRefGoogle Scholar
  43. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495PubMedCrossRefGoogle Scholar
  44. Lonhienne TG, Sagulenko E, Webb RI, Lee KC, Franke J, Devos DP, Nouwens A, Carroll BJ, Fuerst JA (2010) Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 107:12883–12888PubMedPubMedCentralCrossRefGoogle Scholar
  45. Luo C, Rodriguez-R LM, Konstantinidis KT (2014) MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 42:e73–e73PubMedPubMedCentralCrossRefGoogle Scholar
  46. Mitchell AL, Attwood TK, Babbitt PC et al (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D351–D360PubMedCrossRefGoogle Scholar
  47. Neumann S, Wessels H, Rijpstra WIC, Damste JSS, Kartal B, Jetten MSM, van Niftrik L (2014) Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium Kuenenia stuttgartiensis. Mol Microbiol 94:794–802PubMedPubMedCentralCrossRefGoogle Scholar
  48. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055PubMedPubMedCentralCrossRefGoogle Scholar
  49. Peeters SH, van Niftrik L (2019) Trending topics and open questions in anaerobic ammonium oxidation. Curr Opin Chem Biol 49:45–52PubMedCrossRefGoogle Scholar
  50. Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829PubMedPubMedCentralCrossRefGoogle Scholar
  51. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C, Zhou J, Oren A, Zhang Y-Z (2014) A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 196:2210–2215PubMedPubMedCentralCrossRefGoogle Scholar
  52. Rast P, Glockner I, Boedeker C et al (2017) Three novel species with peptidoglycan cell walls form the new genus Lacunisphaera gen. nov in the family Opitutaceae of the Verrucomicrobial subdivision 4. Front Microbiol 8:18CrossRefGoogle Scholar
  53. Rivas-Marin E, Canosa I, Santero E, Devos DP (2016) Development of genetic tools for the manipulation of the Planctomycetes. Front Microbiol 7:10Google Scholar
  54. Rodriguez-R LM & Konstantinidis KT (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints Google Scholar
  55. Santarella-Mellwig R, Pruggnaller S, Roos N, Mattaj IW, Devos DP (2013) Three-dimensional reconstruction of bacteria with a complex endomembrane system. PLoS Biol 11:9CrossRefGoogle Scholar
  56. Scheuner C, Tindall BJ, Lu M, Nolan M, Lapidus A, Cheng J-F, Goodwin L, Pitluck S, Huntemann M, Liolios K (2014) Complete genome sequence of Planctomyces brasiliensis type strain (DSM 5305 T), phylogenomic analysis and reclassification of Planctomycetes including the descriptions of Gimesia gen. nov., Planctopirus gen. nov. and Rubinisphaera gen. nov. and emended descriptions of the order Planctomycetales and the family Planctomycetaceae. Stand Genomic Sci 9:10PubMedPubMedCentralCrossRefGoogle Scholar
  57. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676PubMedPubMedCentralCrossRefGoogle Scholar
  58. Schlesner H (1989) Planctomyces brasiliensis sp. nov., a halotolerant bacterium from a salt pit. Syst Appl Microbiol 12:159–161CrossRefGoogle Scholar
  59. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539PubMedPubMedCentralCrossRefGoogle Scholar
  60. Spring S, Bunk B, Spröer C, Rohde M, Klenk HP (2018) Genome biology of a novel lineage of Planctomycetes widespread in anoxic aquatic environments. Environ Microbiol 20:2438–2455PubMedCrossRefPubMedCentralGoogle Scholar
  61. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313PubMedPubMedCentralCrossRefGoogle Scholar
  62. Tekniepe BL, Schmidt JM, Starr P (1981) Life cycle of a budding and appendaged bacterium belonging to morphotype IV of the Blastocaulis-Planctomyces group. Curr Microbiol 5:1–6CrossRefGoogle Scholar
  63. UniProt C (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515CrossRefGoogle Scholar
  64. van Teeseling MCF, Mesman RJ, Kuru E, Espaillat A, Cava F, Brun YV, VanNieuwenhze MS, Kartal B, van Niftrik L (2015) Anammox Planctomycetes have a peptidoglycan cell wall. Nat Commun 6:6Google Scholar
  65. Vollmers J, Frentrup M, Rast P, Jogler C, Kaster A-K (2017) Untangling genomes of novel planctomycetal and verrucomicrobial species from Monterey Bay kelp forest metagenomes by refined binning. Front Microbiol 8:472PubMedPubMedCentralCrossRefGoogle Scholar
  66. Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17:241–249CrossRefGoogle Scholar
  67. Wiegand S, Jogler M, Jogler C (2018) On the maverick Planctomycetes. FEMS Microbiol Rev 42:739–760PubMedPubMedCentralCrossRefGoogle Scholar
  68. Wiegand S, Jogler M, Boedeker C, Pinto D, Vollmers J, Rivas-Marín E, Kohn T, Peeters SH, Heuer A, Rast P, Oberbeckmann S, Bunk B, Jeske O, Meyerdierks A, Storesund JE, Kallscheuer N, Lücker S, Lage OM, Pohl T, Merkel BJ, Hornburger P, Müller R-W, Brümmer F, Labrenz M, Spormann AM, Op den Camp HJM, Overmann J, Amann R, Jetten MSM, Mascher T, Medema MH, Devos DP, Kaster A-K, Øvreås L, Rohde M, Galperin MY, Jogler C (2019) Cultivation and functional characterization of 79 Planctomycetes uncovers their unique biology. Nat Microbiol.  https://doi.org/10.1038/s41564-019-0588-1 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H, Whitman WB, Euzéby J, Amann R, Rosselló-Móra R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635PubMedPubMedCentralCrossRefGoogle Scholar
  70. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y (2018) dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46:W95–W101PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alje S. Boersma
    • 1
  • Nicolai Kallscheuer
    • 1
  • Sandra Wiegand
    • 1
  • Patrick Rast
    • 2
  • Stijn H. Peeters
    • 1
  • Rob J. Mesman
    • 1
  • Anja Heuer
    • 2
  • Christian Boedeker
    • 2
  • Mike S. M. Jetten
    • 1
  • Manfred Rohde
    • 3
  • Mareike Jogler
    • 1
    • 2
  • Christian Jogler
    • 1
    Email author
  1. 1.Department of MicrobiologyRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Leibniz Institute DSMZ BraunschweigBrunswickGermany
  3. 3.Central Facility for MicroscopyHelmholtz Centre for Infection ResearchBrunswickGermany

Personalised recommendations