Advertisement

Micromonospora orduensis sp. nov., isolated from deep marine sediment

  • Aysel VeyisogluEmail author
  • Lorena Carro
  • Demet Cetin
  • Jose M. Igual
  • Hans-Peter Klenk
  • Nevzat SahinEmail author
Original Paper

Abstract

A novel actinobacterial strain, designated S2509T, was isolated from marine sediment collected by a dredge at a depth of 45 m along Melet River offshore of the southern Black Sea coast, Ordu, Turkey. The cell wall peptidoglycan of strain was found to contain meso-diaminopimelic acid and 3-OH-diaminopimelic acid. The whole cell sugars detected were arabinose, glucose, rhamnose, ribose and xylose. The diagnostic phospholipids of strain S2509T were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, a glycolipid and two unidentified phospholipids. The predominant menaquinones were identified as MK-9(H8), MK-9(H6), MK-10(H8), MK-9(H4), MK-10(H4) and MK-10(H6). The major cellular fatty acids were found to be iso-C16:0, iso-C15:0 and 10-methyl C17:0. The taxonomic position of the strain was established using a polyphasic approach, showing that S2509T strain belongs to the genus Micromonospora. Phylogenetic analysis based on the 16S rRNA gene sequence of strain S2509T showed that it is closely related to the type strain of Micromonospora chokoriensis DSM 45160T (99.37% sequence similarity), and phylogenetically clustered with Micromonospora inaquosa LB39T (99.37%), Micromonospora lupini Lupac 14NT (99.16%), Micromonospora violae NEAU-zh8T (99.23%) and Micromonospora taraxaci NEAU-P5T (99.03%). The phylogenetic analysis based on the gyrB gene sequence of strain S2509T confirmed its close relationship with M. chokoriensis JCM 13247T (96.5% sequence similarity). Whole genome sequences confirmed by digital DNA-DNA hybridization analysis that the strain S2509T represents a novel species in the genus Micromonospora, for which the name Micromonospora orduensis sp. nov. is proposed. The type strain is S2509T (=DSM 45926T = KCTC 29201T).

Keywords

Micromonospora Polyphasic taxonomy Marine sediment 16S rRNA gene gyrB gene 

Notes

Acknowledgements

AV is gratefully acknowledge support from Ondokuz Mayis University (Project No. PYO. FEN. 1901.12.014) and the School of Biology (Newcastle University). LC thanks the University of Salamanca for a postdoctoral fellowship. Genome sequencing was provided by MicrobesNG (http://www.microbesng.uk), which is supported by the BBSRC (Grant Number BB/L024209).

Author contributions

AV, NS and HPK designed the study. AV isolated the strain and carried out phenotypic characterisation and single gene phylogenies. LC carried out chemotaxonomic analysis and genome sequencing and analysing. DC carried out scanning electron microscopy analysis and JMI carried out fatty acids determination. AV and LC wrote the manuscript. All authors have revised the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

Supplementary material

10482_2019_1349_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)
10482_2019_1349_MOESM2_ESM.jpg (206 kb)
Supplementary material 2 (JPEG 205 kb)
10482_2019_1349_MOESM3_ESM.jpg (75 kb)
Supplementary material 3 (JPEG 75 kb)
10482_2019_1349_MOESM4_ESM.doc (454 kb)
Supplementary material 4 (DOC 454 kb)
10482_2019_1349_MOESM5_ESM.doc (802 kb)
Supplementary material 5 (DOC 802 kb)
10482_2019_1349_MOESM6_ESM.docx (139 kb)
Supplementary material 6 (DOCX 138 kb)
10482_2019_1349_MOESM7_ESM.doc (41 kb)
Supplementary material 7 (DOC 41 kb)

References

  1. Ara I, Kudo T (2007) Two new species of the genus Micromonospora: Micromonospora chokoriensis sp. nov. and Micromonospora coxensis sp. nov., isolated from sandy soil. J Gen Appl Microbiol 53:29–37CrossRefPubMedGoogle Scholar
  2. Carro L, Nouioui I, Sangal V, Meier-Kolthoff JP, Trujillo ME, Montero-Calasanz MDC, Sahin N, Smith DL, Kim KE, Peluso P, Deshpande S, Woyke T, Shapiro N, Kyrpides NC, Klenk HP, Göker M, Goodfellow M (2018) Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci Rep 8(1):525CrossRefPubMedPubMedCentralGoogle Scholar
  3. Carro L, Veyisoglu A, Cetin D, Igual JM, Klenk H-P, Trujillo ME, Sahin N (2019) A study of three bacteria isolated from marine sediment and description of Micromonospora globispora sp. nov. Syst Appl Microbiol 42:190–197CrossRefPubMedGoogle Scholar
  4. Chun J, Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245CrossRefPubMedGoogle Scholar
  5. Collins MD (1985) Isoprenoid quinone analysis in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–287Google Scholar
  6. Collins CH, Lyne PM, Grange JM, Falkinham JO (2004) Microbiological methods, 8th edn. Arnold, LondonGoogle Scholar
  7. Cross T, Williams ST, Sharpe ME, Holt JG (1989) The actinomycetes II: growth and examination of actinomycetes-some guidelines. Bergey’s Man Syst Bacteriol 4:2340–2343Google Scholar
  8. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedPubMedCentralGoogle Scholar
  9. Felsenstein J (1985) Confidence limits on phylogeny: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedPubMedCentralGoogle Scholar
  10. Garcia LC, Martínez-Molina E, Trujillo ME (2010) Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 60:331–337CrossRefPubMedGoogle Scholar
  11. Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Ann Rev Microbiol 37:189–216CrossRefGoogle Scholar
  12. Gullo VP, McAlpine J, Lam KS, Baker D, Petersen F (2006) Drug discovery from natural products. J Ind Microbiol Biotechnol 33:523–531CrossRefPubMedGoogle Scholar
  13. Jensen PR, Gontag E, Mafnas C, Mincer TJ, Fenical W (2005) Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environ Microbiol 7:1039–1048CrossRefPubMedGoogle Scholar
  14. Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145PubMedPubMedCentralGoogle Scholar
  15. Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005CrossRefGoogle Scholar
  16. Kawamoto I (1989) Genus Micromonospora. Bergey’s Man Syst Bacteriol 4:2442–2450Google Scholar
  17. Kelly KL (1964) Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors. US Government Printing Office, WashingtonGoogle Scholar
  18. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kluge AG, Farris FS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32CrossRefGoogle Scholar
  20. Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 173–199Google Scholar
  21. Lechevalier MP, Lechevalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443CrossRefGoogle Scholar
  22. Lee I, Ouk Kim Y, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103CrossRefPubMedGoogle Scholar
  23. Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10(1):2182CrossRefPubMedPubMedCentralGoogle Scholar
  24. Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in the ocean sediments. Appl Environ Microb 68:5005–5011CrossRefGoogle Scholar
  25. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  26. Nash P, Krent MM (1991) Culture media. In: Balows A, Hauser WJ, Herrmann KL, Isenberg HD, Shadomy HJ (eds) Manual of clinical microbiology, 3rd edn. American Society for Microbiology, Washington, pp 1268–1270Google Scholar
  27. Ørskov J (1923) Investigations into the morphology of the ray fungi. Levin and Munksgaard, CopenhagenGoogle Scholar
  28. Phongsopitanun W, Kudo T, Mori M, Shiomi K, Pittayakhajonwut P, Suwanborirux K, Tanasupawat S (2015) Micromonospora fluostatini sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 65(12):4417–4423CrossRefPubMedGoogle Scholar
  29. Rusnak K, Troyanovich J, Mierzwa R, Chu M, Patel M, Weistein M (2001) An antibiotic with activity against gram-positive bacteria from the gentamicin-producing strain of Micromonospora purpurea. Appl Microbiol Biotechnol 56:502–503CrossRefPubMedGoogle Scholar
  30. Saitou N, Nei M (1987) The neighbor-joining method. A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  31. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Technical note 101. MIDI Inc, Newark, DEGoogle Scholar
  32. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  33. Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231PubMedPubMedCentralGoogle Scholar
  34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  35. Tan GYA, Ward AC, Goodfellow M (2006) Exploration of Amycolatopsis diversity in soil using genus-specific primers and novel selective media. Syst Appl Microbiol 29:557–569CrossRefPubMedGoogle Scholar
  36. Veyisoglu A, Carro L, Cetin D, Guven K, Spröer C, Pötter G, Klenk H-P, Sahin N, Goodfellow M (2016a) Micromonospora profundi sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol 66:4735–4743CrossRefPubMedGoogle Scholar
  37. Veyisoglu A, Carro L, Guven K, Cetin D, Sproer C, Schumann P, Klenk H-P, Goodfellow M, Sahin N (2016b) Micromonospora yasonensis sp. nov., isolated from a Black Sea sediment. Antonie Van Leeuwenhoek 109:1019–1028CrossRefPubMedGoogle Scholar
  38. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the ad hoc committee on reconciliation of approachesto bacterial systematics. Int J Syst Evol Microbiol 37:463–464CrossRefGoogle Scholar
  39. Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813PubMedGoogle Scholar
  40. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Medical Laboratory Techniques, Vocational School of Health ServicesSinop UniversitySinopTurkey
  2. 2.Departamento de Microbiología y Genética, Edificio Departamental, Campus Miguel de UnamunoUniversidad de SalamancaSalamancaSpain
  3. 3.Division of Science Education, Department of Mathematics and Science Education, Gazi Faculty of EducationGazi UniversityAnkaraTurkey
  4. 4.Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC)SalamancaSpain
  5. 5.School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
  6. 6.Department of Molecular Biology and Genetics, Faculty of Art and ScienceOndokuz Mayis UniversitySamsunTurkey

Personalised recommendations