Advertisement

Bacillus lacisalsi sp. nov., a moderately haloalkaliphilic bacterium isolated from a saline–alkaline lake

  • Luna Dong
  • Shuangyan Wang
  • Hao Cao
  • Baisuo Zhao
  • Xiaoxia Zhang
  • Kun Wu
  • Haisheng WangEmail author
Original Paper

Abstract

An alkaliphilic and moderately halophilic strain, designated YSP-3T, characterised by optimal growth at pH 9.0 and at 8.0% (w/v) NaCl, was isolated from Yangshapao Lake, Jilin Province, China. Cells of this strain is Gram-positive, straight rods and form a central or sub-terminal ellipsoidal endospore. Phylogenetic analysis based on 16S rRNA gene sequences indicated that it was grouped in the genus Bacillus with Bacillus aurantiacus K1-5T and Bacillus populi FJAT-45347T as the close relative (97.5 and 97.2% 16S rRNA gene sequence similarity, respectively). Genomic relatedness between strain YSP-3T and its close relative was evaluated using average nucleotide identity, digital DNA–DNA hybridization and average amino acid identity with the values of 70.3–85.1%, 19.7–20.1% and 71.5–71.6%, respectively. Comparative genomics analysis showed that strain YSP-3T has distinct amino acid bias and significantly differences from foreign invasion events during evolution relative to the reference strains. Cell-wall peptidoglycan contains meso-diaminopimelic acid. The predominant polar lipids are phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol. The predominant quinone is menaquinone-7. The major fatty acids of strain YSP-3T are anteiso-C15:0, iso-C15:0, iso-C16:0, anteiso-C17:0 and Iso-C14:0. DNA G + C content of strain YSP-3T is 48.3 mol%. Based on genomics analysis, physiological, biochemical and chemotaxonomic data, strain YSP-3T represent a novel species, for which the name Bacillus lacisalsi sp. nov. is proposed. The type strain is YSP-3T (  = ACCC 60365T = KCTC 33934T).

Keywords

Bacillaceae Polyphasic taxonomy Comparative genomics Amino acid bias 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 31300101) and Fundamental Research Funds for Central Non-profit Scientific Institution (Grant No. 1610042018005).

Author contributions

DL and WS wrote the main manuscript text. WH designed the experiments. DL and WS carried out the experiments. WH, ZB and ZX analysed the data. All authors approved and read the final manuscript.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflicts of interest regarding this manuscript.

Ethical approval

No specific ethical or institutional permits were required to conduct sampling and the experimental studies did not involve endangered or protected species.

Supplementary material

10482_2019_1322_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1350 kb)

References

  1. Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206.  https://doi.org/10.1111/j.1472-765X.1991.tb00608.x CrossRefGoogle Scholar
  2. Cappuccino JG, Sherman N (2002) Microbiology: a laboratory manual, 6th edn. Pearson Education, Inc., Benjamin CummingsGoogle Scholar
  3. Chen GQ, Jiang XR (2018) Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotechnol 50:94–100.  https://doi.org/10.1016/j.copbio.2017.11.016 CrossRefGoogle Scholar
  4. Chen Y, Chen XY, Du HT, Zhang X, Ma YM et al (2019) Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate (PHBV). Metab Eng 54:69–82.  https://doi.org/10.1016/j.ymben.2019.03.006 CrossRefGoogle Scholar
  5. Collins MD (1985) Analysis of isoprenoid quinones. Methods Microbiol 18:329–366.  https://doi.org/10.1016/S0580-9517(08)70480-X CrossRefGoogle Scholar
  6. Dong XZ, Cai MY (2001) Determination of biochemical properties. In: Dong XZ, Cai MY (eds) Manual for the systematic identification of general bacteria. Science Press, Beijing, pp 370–398 (in Chinese) Google Scholar
  7. Embley TM (1996) The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 13:171–174.  https://doi.org/10.1111/j.1472-765X.1991.tb00600.x CrossRefGoogle Scholar
  8. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376.  https://doi.org/10.1007/BF01734359 CrossRefGoogle Scholar
  9. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791.  https://doi.org/10.1111/j.1558-5646.1985.tb00420.x CrossRefGoogle Scholar
  10. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al (1981) Manual of methods for general bacteriology. American Society for Microbiology, Washington, pp 25–29Google Scholar
  11. Gregersen T (1978) Rapid method for distinction of gram-negative from gram-positive bacteria. Appl Environ Microbiol 5:123–127.  https://doi.org/10.1007/BF00498806 Google Scholar
  12. Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322.  https://doi.org/10.2323/jgam.29.319 CrossRefGoogle Scholar
  13. Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E (2018) The biology of CRISPR-Cas: backward and forward. Cell 172:1239–1259.  https://doi.org/10.1016/j.cell.2017.11.032 CrossRefGoogle Scholar
  14. Kämpfer P (1994) Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17:86–98.  https://doi.org/10.1016/S0723-2020(11)80035-4 CrossRefGoogle Scholar
  15. Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Micobiol 42:989–1005.  https://doi.org/10.1139/m96-128 CrossRefGoogle Scholar
  16. Kelly KL (1964) Inter-society colour council-national bureau of standards colour-name charts illustrated with centroid colours published in US. US Government Printing Office, WashingtonGoogle Scholar
  17. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351.  https://doi.org/10.1099/ijs.0.064931-0 CrossRefGoogle Scholar
  18. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111.  https://doi.org/10.1007/BF01731581 CrossRefGoogle Scholar
  19. Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264.  https://doi.org/10.1128/JB.187.18.6258-6264.2005 CrossRefGoogle Scholar
  20. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  21. Logan NA, de Vos P, Genus I (2009) Bacillus. In: de Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al (eds) Bergey’s manual of systematic bacteriology, vol 3. Springer, New York, pp 21–128Google Scholar
  22. Luo C, Rodriguez-R LM, Konstantinidis KT (2014) MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 42:e73.  https://doi.org/10.1093/nar/gku169 CrossRefGoogle Scholar
  23. McDonald JH, Grasso AM, Rejto LK (1999) Patterns of temperature adaptation in proteins from Methanococcus and Bacillus. Mol Biol Evol 16:1785–1790.  https://doi.org/10.1093/oxfordjournals.molbev.a026090 CrossRefGoogle Scholar
  24. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60.  https://doi.org/10.1186/1471-2105-14-60 CrossRefGoogle Scholar
  25. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbbiol Methods 2:233–241.  https://doi.org/10.1016/0167-7012(84)90018-6 CrossRefGoogle Scholar
  26. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185.  https://doi.org/10.1093/nar/gkm321 CrossRefGoogle Scholar
  27. Ohta H, Hattori T (1983) Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie Van Leeuwenhoek 49:429–446.  https://doi.org/10.1007/BF00399322 Google Scholar
  28. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214.  https://doi.org/10.1093/nar/gkt1226 CrossRefGoogle Scholar
  29. Parte AC (2018) LPSN—list of Prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 68:1825–1829.  https://doi.org/10.1099/ijsem.0.002786 CrossRefGoogle Scholar
  30. Pettersson B, Lembke F, Hammer P, Stackebrandt E, Priest FG (1996) Bacillus sporothermodurans, a new species producing highly heat-resistant endospores. Int J Syst Bacteriol 46:759–764.  https://doi.org/10.1099/00207713-46-3-759 CrossRefGoogle Scholar
  31. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al (2014) A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 196:2210–2215.  https://doi.org/10.1128/JB.01688-14 CrossRefGoogle Scholar
  32. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131.  https://doi.org/10.1073/pnas.0906412106 CrossRefGoogle Scholar
  33. Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110:455–456.  https://doi.org/10.1007/s10482-017-0841-7 CrossRefGoogle Scholar
  34. Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945.  https://doi.org/10.1093/oxfordjournals.molbev.a040771 Google Scholar
  35. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425.  https://doi.org/10.1093/oxfordjournals.moldev.a040454 Google Scholar
  36. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 607–654Google Scholar
  37. Sorokin DY, Kuenen JG, Muyzer G (2011) The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front Microbiol 2:44.  https://doi.org/10.3389/fmicb.2011.00044 CrossRefGoogle Scholar
  38. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152Google Scholar
  39. Täubel M, Kämpfer P, Buczolits S, Lubitz W, Busse HJ (2003) Bacillus barbaricus sp. nov., isolated from an experimental wall painting. Int J Syst Evol Microbiol 53:725–730.  https://doi.org/10.1099/ijs.0.02304-0 CrossRefGoogle Scholar
  40. Wang HF, Li QL, Zhang YG, Xiao M, Zhou XK et al (2017) Bacillus capparidis sp. nov., an endophytic bacterium isolated from roots of Capparis spinosa L. Int J Syst Evol Microbiol 67:282–287.  https://doi.org/10.1099/ijsem.0.001616 CrossRefGoogle Scholar
  41. Wang S, Dong L, Zhao B, Xu S, Wu K et al (2018) Draft genome sequence of Bacillus sp. strain YSP-3, a halophilic, alkaliphilic bacterium isolated from a salt lake. Microbiol Resour Announc 7:e00882-18.  https://doi.org/10.1128/MRA.00882-18 CrossRefGoogle Scholar
  42. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464.  https://doi.org/10.1111/j.1365-2672.1988.tb01872.x CrossRefGoogle Scholar
  43. Wu S, Zhu Z, Fu L, Niu B, Li W (2011) WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genom 12:444.  https://doi.org/10.1186/1471-2164-12-444 CrossRefGoogle Scholar
  44. Xu L, Wu YH, Zhou P, Cheng H, Liu Q, Xu XW (2018) Investigation of the thermophilic mechanism in the genus Porphyrobacter by comparative genomic analysis. BMC Genom 19:385.  https://doi.org/10.1186/s12864-018-4789-4 CrossRefGoogle Scholar
  45. Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017a) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286.  https://doi.org/10.1007/s10482-017-0844-4 CrossRefGoogle Scholar
  46. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al (2017b) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617.  https://doi.org/10.1099/ijsem.0.001755 CrossRefGoogle Scholar
  47. Zhang S, Li Z, Yan Y, Zhang C, Li J et al (2016) Bacillus urumqiensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 66:2305–2312.  https://doi.org/10.1099/ijsem.0.001028 CrossRefGoogle Scholar
  48. Zhao B, Yan Y, Chen S (2014) How could haloalkaliphilic microorganisms contribute to biotechnology? Can J Microbiol 60:717–727.  https://doi.org/10.1139/cjm-2014-0233 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate SchoolChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.College of Life ScienceHenan Agricultural UniversityZhengzhouPeople’s Republic of China
  3. 3.Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations