Advertisement

Antonie van Leeuwenhoek

, Volume 112, Issue 12, pp 1775–1784 | Cite as

FSH1 overexpression triggers apoptosis in Saccharomyces cerevisiae

  • Ramachandran Gowsalya
  • Chidambaram Ravi
  • Mathivanan Arul
  • Vasanthi NachiappanEmail author
Original Paper
  • 90 Downloads

Abstract

FSH1 belongs to the family of serine hydrolases in yeast and is homologous to the human ovarian tumor suppressor gene (OVAC2). Our preliminary results showed that cells lacking Fsh1p exhibit an increase in cell growth, and a decrease in the expression of AIF1 and NUC1 (apoptosis responsive genes) when compared to the wild type cells. Growth inhibition of cells overexpressing FSH1 is due to induction of cell death associated with cell death markers typical of mammalian apoptosis namely DNA fragmentation, phosphatidylserine externalization, ROS accumulation, Cytochrome c release, and altered mitochondrial membrane potential. When wild type cells were overexpressed with FSH1 there was up regulation of AIF1 level when compared to control cells suggesting that overexpression of FSH1 regulated cell death in yeast.

Keywords

Apoptosis Cell death OVCA2 FSH 

Abbreviations

FSH

Family of serine hydrolase

S. cerevisiae

Saccharomyces cerevisiae

MMP

Mitochondrial membrane potential

Notes

Acknowledgements

We thank Prof. Ram Rajasekharan (Central Food Technological Research Institute, Mysore, India) for providing yeast strains and reagents. We thank the infrastructure facilities from DST-FIST, Department of Biochemistry, Life Sciences & DST-PURSE facilities, of Bharathidasan University.

Author’s Contribution

VN and RG designed the experiments, RG, CR and MA performed the experiments.VN and RG wrote the manuscript. All the authors discussed the results and concluded the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10482_2019_1310_MOESM1_ESM.docx (30 kb)
Supplementary material 1 (DOCX 30 kb)

References

  1. Acosta-Zaldıvar M, Andres MT, Rego A, Pereira CS, Fierro JF, Corte-Real M (2016) Human lactoferrin triggers a mitochondrial- and caspases dependent regulated cell death in Saccharomyces cerevisiae. Apoptosis 21:163–173CrossRefGoogle Scholar
  2. Amigoni L, Frigerio G, Martegani E, Colombo S (2016) Involvement of Aif1 in apoptosis triggered by lack of Hxk2 in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 16(3):fow16.  https://doi.org/10.1093/femsyr/fow016 CrossRefGoogle Scholar
  3. Azizi AA, Gelpi E, Yang JW, Rupp B, Godwin AK, Slater C, Slavc I, Lubec G (2006) Mass spectrometric identification of serine hydrolase OVCA2 in the medulloblastoma cell line DAOY. Cancer Lett 241(2):235–249CrossRefGoogle Scholar
  4. Baxter SM, Rosenblum JS, Knutson S, Nelson MR, Montimurro JS, DiGennaro JA, Speir JA, Burbaum JJ, Fetrow JS (2004) Synergistic computational and experimental proteomics approaches for more accurate detection of active serine hydrolases in yeast. Mol Cell Proteom 3:209–225CrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  6. Büttner S, Eisenberg T, Carmona-Gutierrez D, Ruli D, Knauer H, Ruckenstuhl C, Sigrist C, Wissing S, Kollroser M, Fröhlich KU, Sigrist S, Madeo F (2007) Endonuclease G regulates budding yeast life and death. Mol Cell 25:233–246CrossRefGoogle Scholar
  7. Carmona-Gutierrez D, Bauer MA, Zimmermann A, Aguilera A, Austriaco N, Ayscough K et al (2018) Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell 5:4–31CrossRefGoogle Scholar
  8. Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high-efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425CrossRefGoogle Scholar
  9. Gowsalya R, Ravi C, Kannan M, Nachiappan V (2019) FSH3 mediated cell death is dependent on NUC1 in Saccharomyces cerevisiae. FEMS Yeast Res 19(3):foz017.  https://doi.org/10.1093/femsyr/foz017 CrossRefPubMedGoogle Scholar
  10. Guaragnella N, Bobba A, Passarella S (2010) Yeast acetic acid induced programmed cell death can occur without cytochrome c release which requires metacaspase YCA1. FEBS Lett 584:224–228CrossRefGoogle Scholar
  11. Herker E, Jungwrth H, Lehmann KA, Maldene C, Frohlich KU, Wissing S, Buttner S, Fehr M, Sigrist S, Madeo F (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164:501–507CrossRefGoogle Scholar
  12. Khan MA, Chock PB, Stadtman ER (2005) Knockout of caspase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saccharomyces cerevisiae. PNAS 102:17326–17331CrossRefGoogle Scholar
  13. Koning AJ, Lum PY, Williams JM, Wright R (1993) DiOC6 staining reveals organelle structure and dynamics in living yeast cells. Cell Motil Cytoskelet 25:111–128CrossRefGoogle Scholar
  14. Laun P, Pichova A, Madeo F, Fuchs J, Ellinger A, Kohlwein S, Dawes I, Fröhlich KU, Breitenbach M (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39:1166–1173CrossRefGoogle Scholar
  15. Lee BI, Lee DJ, Cho KJ, Kim GW (2005) Early nuclear translocation of endonuclease G and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Neurosci Lett 386:23–27CrossRefGoogle Scholar
  16. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99CrossRefGoogle Scholar
  17. Ligr M, Madeo F, Frohlich E, Hilt W, Frohlich KU, Wolf DH (1998) Mammalian Bax triggers apoptotic changes in yeast. FEBS Lett 38:61–65CrossRefGoogle Scholar
  18. Ludovico P, Sousa MJ, Silva MT, Leao C, Corte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147:2409–2415CrossRefGoogle Scholar
  19. Ly JD, Grubb D, Lawen A (2003) The mitochondrial membrane potential (∆ψm) in apoptosis; an update. Apoptosis 8:115–128CrossRefGoogle Scholar
  20. Madeo F, Frohlich E, Frohlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139:729–734CrossRefGoogle Scholar
  21. Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757–767CrossRefGoogle Scholar
  22. Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Frohlich KU (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917CrossRefGoogle Scholar
  23. Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T, Frohlich KU (2004) Apoptosis in yeast. Curr Opin Microbiol 7:655–660CrossRefGoogle Scholar
  24. Madeo F, Carmona-Gutierrez D, Ring J (2009) Caspase-dependent and caspase-independent cell death pathways in yeast. Biochem Biophys Res Commun 382:227–231CrossRefGoogle Scholar
  25. Mazzoni C, Falcone C (2008) Caspase-dependent apoptosis in yeast. Biochim Biophys Acta 1783:1320–1327CrossRefGoogle Scholar
  26. Miramar MD, Costantini P, Ravagnan L, Saraiva LM, Haouzi D, Brothers G, Penninger JM, Peleato ML, Kroemer G, Susin SA (2001) NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 276:16391–16398CrossRefGoogle Scholar
  27. Montague JW Jr, Hughes FM, Cidlowski JA (1997) Native recombinant cyclophilins A, B, and C degrade DNA independently of peptidylprolyl cis-trans- isomerase activity. Potential roles cyclophilins in apoptosis. J Biol Chem 272:6677–6684CrossRefGoogle Scholar
  28. Muzaffar S, Chattoo BB (2017) Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae. Apoptosis 22:463–474CrossRefGoogle Scholar
  29. Quevillon-Cheruel S, Leulliot N, Graille M, Hervouet N, Coste F, Bénédetti H, Zelwer C, Janin J, Van Tilbeurgh H (2005) Crystal structure of yeast YHR049W/FSH1, a member of the serine hydrolase family. Protein Sci 14:1350–1356CrossRefGoogle Scholar
  30. Schafer P, Scholz SR, Gimadutdinow O, Cymerman IA, Bujnicki JM, Ruiz-Carrillo A, Pingoud A, Meiss G (2004) Structural and functional characterization of mitochondrial Endo G, a sugar non-specific nuclease which plays an important role during apoptosis. J Mol Biol 338:217–228CrossRefGoogle Scholar
  31. Simon H-U, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418CrossRefGoogle Scholar
  32. Sousa CA, Soares HMVM, Soares EV (2019) Nickel oxide nanoparticles trigger caspase- and mitochondria-dependent apoptosis in the yeast Saccharomyces cerevisiae. Chem Res Toxicol 32:245–254CrossRefGoogle Scholar
  33. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446CrossRefGoogle Scholar
  34. Vahsen N, Cande C, Briere JJ (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689CrossRefGoogle Scholar
  35. Wissing S, Ludovico P, Herker E (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974CrossRefGoogle Scholar
  36. Zaim J, Speina E, Kierzek AM (2005) Identification of new genes regulated by the Crt1 transcription factor, an effector of the DNA damage checkpoint pathway in Saccharomyces cerevisiae. J Biol Chem 280:28–37CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ramachandran Gowsalya
    • 1
  • Chidambaram Ravi
    • 1
  • Mathivanan Arul
    • 1
  • Vasanthi Nachiappan
    • 1
    Email author
  1. 1.Department of Biochemistry, School of Life SciencesBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations