Antonie van Leeuwenhoek

, Volume 112, Issue 12, pp 1815–1826 | Cite as

Putative virulence factors of Plesiomonas shigelloides

  • Melissa S. Edwards
  • Richard William McLaughlin
  • Jia Li
  • XiaoLing Wan
  • Yingli Liu
  • HaiXia Xie
  • YuJiang Hao
  • JinSong ZhengEmail author
Original Paper


Plesiomonas shigelloides is a Gram-negative rod-shaped bacterium which has been isolated from humans, animals and the environment. It has been associated with diarrhoeal disease in humans and various epizootic diseases in animals. In this study P. shigelloides strains were isolated from the faecal material of a captive Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis; YFP) living in semi-natural conditions in China. Plesiomonas shigelloides strain EE2 was subjected to whole genome sequencing. The draft genome was then compared to the genome sequences of ten other P. shigelloides isolates using the Pathosystems Resource Integration Center pipeline. In addition to several virulence factors which have been previously reported, we are proposing new candidate virulence factors such as a repeats-in-toxin protein, lysophospholipase, a twin-arginine translocation system and the type VI secretion effector Phospholipase A1.


Plesiomonas shigelloides Draft genome Virulence factors Neophocaena asiaeorientalis asiaeorientalis PATRIC 



The authors thank Rebecca Wattam at Virginia Tech for her assistance on the use of PATRIC. This research was done as part of a Provost Honors project under the leadership of Zina Haywood, Executive Vice President/Provost. We thank Jennifer Cumpston and Donald Zakutansky for their enthusiastic support of this research. We also thank the staff of the Tian-e-Zhou National Natural Reserve for their help in collecting faecal samples. This work was supported by Grants from the Bureau of Science and Technology for Development, Chinese Academy of Sciences (No. ZSSD-004); the National Natural Science Foundation of China (Nos. 31430080, 31870372); and the Special Conservation Fund for the Yangtze finless porpoise from the Ministry of Agriculture of China.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10482_2019_1303_MOESM1_ESM.doc (1.6 mb)
Supplementary material 1 (DOC 1620 kb)


  1. Abbott SL, Kokka RP, Janda JM (1991) Laboratory investigations on the low pathogenic potential of Plesiomonas shigelloides. J Clin Microbiol 29:148–153PubMedPubMedCentralGoogle Scholar
  2. Aquilini E, Merino S, Tomás JM (2013) The Plesiomonas shigelloides wb (O1) gene cluster and the role of O1-antigen LPS in pathogenicity. Microb Pathog 63:1–7PubMedGoogle Scholar
  3. Auxiliadora-Martins M, Bellissimo-Rodrigues F, Viana JM, Teixeira GCA, Nicolini EA, Cordeiro KSM, Colozza G, Martinez R, Martins-Filho OS, Basile-Filho A (2010) Septic shock caused by Plesiomonas shigelloides in a patient with sickle beta-zero thalassemia. Heart Lung 39:335–339PubMedGoogle Scholar
  4. Baratéla KC, Saridakis HO, Gaziri LCJ, Pelayo JS (2001) Effects of medium composition, calcium, iron and oxygen on haemolysin production by Plesiomonas shigelloides isolated from water. J Appl Microbiol 90:482–487PubMedGoogle Scholar
  5. Basler M (2015) Type VI secretion system: secretion by a contractile nanomachine. Philos Trans R Soc Lond B Biol Sci 370:20150021PubMedPubMedCentralGoogle Scholar
  6. Berends ETM, Horswill AR, Haste NM, Monestier M, Nizet V, von Kockritz-Blickwede M (2010) Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun 2:576–586PubMedPubMedCentralGoogle Scholar
  7. Bingle LE, Bailey CM, Pallen MJ (2008) Type VI secretion: a beginner’s guide. Curr Opin Microbiol 11:3–8PubMedGoogle Scholar
  8. Bjarnsholt T, Ciofu O, Molin S, Givskov M, Hoiby N (2013) Applying insights from biofilm biology to drug development: can a new approach be developed? Nat Rev Drug Discov 12:791–808PubMedGoogle Scholar
  9. Bjornsdottir-Butler K, Jones JL, Benner R, Burkhardt W 3rd (2011) Development of a real-time PCR assay with an internal amplification control for detection of Gram-negative histamine-producing bacteria in fish. Food Microbiol 28:356–363PubMedGoogle Scholar
  10. Brenner DJ, Krieg NR, Staley JT (2005) Plesiomonas. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology. The Proteobacteria, part B, the Gammaproteobacteria, vol 2, 2nd edn. Springer, New York, pp 740–744Google Scholar
  11. Campos MA, Vargas MA, Regueiro V, Llompart CM, Albertí S, Bengoechea JA (2004) Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 72:7107–7114PubMedPubMedCentralGoogle Scholar
  12. Carattoli A, Zankari E, García-Fernández A, Larsen MV, Lund O, Villa L et al (2014) In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903PubMedPubMedCentralGoogle Scholar
  13. Cascón A, Yugueros J, Temprano A, Sánchez M, Hernanz C, Luengo JM, Naharro G (2000) A major secreted elastase is essential for pathogenicity of Aeromonas hydrophila. Infect Immun 68:3233–3241PubMedPubMedCentralGoogle Scholar
  14. Castelo-Branco DS, Silva AL, Monteiro FO, Guedes GM, Sales JA, Oliveira JS, Maia Junior JE, Miranda SA, Sidrim JJ, Alencar LP, Brilhante RS, Cordeiro RA, Bandeira TJ, Pereira Neto WA, Rocha MF (2017) Aeromonas and Plesiomonas species from scarlet ibis (Eudocimus ruber) and their environment: monitoring antimicrobial susceptibility and virulence. Antonie Van Leeuwenhoek 110:33–43PubMedGoogle Scholar
  15. Committee on Taxonomy (2012) List of marine mammal species and subspecies. Society for Marine Mammalogy. Accessed 25 July 2012
  16. Daskaleros PA, Stoebner JA, Payne SM (1991) Iron uptake in Plesiomonas shigelloides: cloning of the genes for the heme-iron uptake system. Infect Immun 59:2706–2711PubMedPubMedCentralGoogle Scholar
  17. Davis JJ, Gerdes S, Olsen GJ, Olson R, Pusch GD, Shukla M, Vonstein V, Wattam AR, Yoo H (2016) PATtyFams: protein families for the microbial genomes in the PATRIC Database. Front Microbiol 7:118PubMedPubMedCentralGoogle Scholar
  18. Dilks K, Rose RW, Hartmann E, Pohlschroder M (2003) Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185:1478–1483PubMedPubMedCentralGoogle Scholar
  19. Dong TG, Ho BT, Yoder-Himes DR, Mekalanos JJ (2013) Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci USA 110:2623–2628PubMedGoogle Scholar
  20. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193PubMedPubMedCentralGoogle Scholar
  21. Ekundayo TC, Okoh AI (2018) Pathogenomics of virulence traits of Plesiomonas shigelloides that were deemed inconclusive by traditional experimental approaches. Front Microbiol 9:3077PubMedPubMedCentralGoogle Scholar
  22. European Food Safety Authority (EFSA) (2013) European Centre for Disease Prevention and Control (ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011. EFSA J 11:3129Google Scholar
  23. Falcón R, Carbonell GV, Figueredo PMS, Butiao F, Saridakis HO, Pelayo JS, Yano T (2003) Intracellular vacuolation induced by culture filtrates of Plesiomonas shigelloides isolated from environmental sources. J Appl Microbiol 95:273–278PubMedGoogle Scholar
  24. Flaugnatti N, Le TT, Canaan S, Aschtgen MS, Nguyen VS, Blangy S, Kellenberger C, Roussel A, Cambillau C, Cascales E, Journet L (2016) A phospholipase A1 antibacterial Type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol Microbiol 99:1099–1118PubMedGoogle Scholar
  25. Gao A, Zhou K (1995) Geographical variation of external measurements and three subspecies of Neophocaena phocaenoides in Chinese waters. Acta Theriol Sin 15:81–92Google Scholar
  26. Gao ZP, Nie P, Lu JF, Liu LY, Xiao TY, Liu W, Liu JS, Xie HX (2015) Type III secretion system translocon component EseB forms filaments on and mediates autoaggregation of and biofilm formation by Edwardsiella tarda. Appl Environ Microbiol 81:6078–6087PubMedPubMedCentralGoogle Scholar
  27. Gardner SE, Fowlston SE, George WL (1987) In vitro production of cholera toxin-like activity by Plesiomonas shigelloides. J Infect Dis 156:720–722PubMedGoogle Scholar
  28. Golan DE, Brown CS, Cianci CM, Furlong ST, Caulfield JP (1986) Schistosomula of Schistosoma mansoni use lysophosphatidylcholine to lyse adherent human red blood cells and immobilize red cell membrane components. J Cell Biol 103:819–828PubMedGoogle Scholar
  29. González-Rodríguez N, Santos JA, Otero A, García-López ML (2007) Cell-associated hemolytic activity in environmental strains of Plesiomonas shigelloides expressing cell-free, iron-influenced extracellular hemolysin. J Food Prot 70:885–890PubMedGoogle Scholar
  30. Guo Z, Zhao QZ, Zhang XF (2007) Diagnosis and treatment of pneumonia caused by Pseudomonas aeruginosa in a Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis). Acta Theriol Sin 27:86–91Google Scholar
  31. He H, Wang Q, Sheng L, Liu Q, Zhang Y (2011) Functional characterization of Vibrio alginolyticus twin-arginine translocation system: its roles in biofilm formation, extracellular protease activity, and virulence towards fish. Curr Microbiol 62:1193–1199PubMedGoogle Scholar
  32. Henderson DP, Wyckoff EE, Rashidi CE, Verlei H, Oldham AL (2001) Characterization of the Plesiomonas shigelloides genes encoding the heme iron utilization system. J Bacteriol 183:2715–2723PubMedPubMedCentralGoogle Scholar
  33. Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403PubMedGoogle Scholar
  34. Ho BT, Dong TG, Mekalanos JJ (2014) A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15:9–21PubMedGoogle Scholar
  35. Janda JM, Abbott SL (1993) Expression of hemolytic activity by Plesiomonas shigelloides. J Clin Microbiol 31:1206–1208PubMedPubMedCentralGoogle Scholar
  36. Janda JM, Abbott SL, McIver CJ (2016) Plesiomonas shigelloides revisited. Clin Microbiol Rev 29:349–374PubMedPubMedCentralGoogle Scholar
  37. Jennings ME, Quick LN, Ubol N, Shrom S, Dollahon N, Wilson JW (2012) Characterization of Salmonella type III secretion hyper-activity which results in biofilm-like cell aggregation. PLoS ONE 7:e33080PubMedPubMedCentralGoogle Scholar
  38. Kaszowska M, Stojkovic K, Niedziela T, Lugowski C (2016) The O-antigen of Plesiomonas shigelloides serotype O36 containing pseudaminic acid. Carbohydr Res 434:1–5PubMedGoogle Scholar
  39. Kennan RM, Dhungyel OP, Whittington RJ, Egerton JR, Rood JI (2001) The type IV fimbrial subunit gene (fimA) of Dichelobacter nodosus is essential for virulence, protease secretion, and natural competence. J Bacteriol 183:4451–4458PubMedPubMedCentralGoogle Scholar
  40. Knudsen GM, Olsen JE, Aabo S, Barrow P, Rychlik I, Thomsen LE (2013) ClpP deletion causes attenuation of Salmonella Typhimurium virulence through mis-regulation of RpoS and indirect control of CsrA and the SPI genes. Microbiology 159:1497–1509PubMedGoogle Scholar
  41. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 125–175Google Scholar
  42. Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131PubMedGoogle Scholar
  43. Liang X, Moore R, Wilton M, Wong MJQ, Lam L, Dong TG (2015) Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci USA 112:9106–9111PubMedGoogle Scholar
  44. Ling SH, Wang XH, Xie L, Lim TM, Leung KY (2000) Use of green fluorescent protein (GFP) to study the invasion pathways of Edwardsiella tarda in in vivo and in vitro fish models. Microbiology 146:7–19PubMedGoogle Scholar
  45. Liu YL, He TT, Liu LY, Yi J, Nie P, Yu HB, Xie HX (2019) The Edwardsiella piscicida type III translocon protein EseC inhibits biofilm formation by sequestering EseE. Appl Environ Microbiol 85:e02133-18PubMedPubMedCentralGoogle Scholar
  46. Lopez-Sabater EI, Rodriguez-Jerez JJ, Hernandez-Herrero M, Mora-Ventura MT (1996) Incidence of histamine-forming bacteria and histamine content in scombroid fish species from retail markets in the Barcelona area. Int J Food Microbiol 28:411–418PubMedGoogle Scholar
  47. Lu HM, Motley ST, Lory S (1997) Interactions of the components of the general secretion pathway: role of Pseudomonas aeruginosa type IV pilin subunits in complex formation and extracellular protein secretion. Mol Microbiol 25:247–259PubMedGoogle Scholar
  48. Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, Tsang LH, Smeltzer MS, Horswill AR, Bayles KW (2009) Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS ONE 4:e5822PubMedPubMedCentralGoogle Scholar
  49. Masamune A, Sakai Y, Satoh A, Fujita M, Yoshida M, Shimosegawa T (2001) Lysophosphatidylcholine induces apoptosis in AR42J cells. Pancreas 22:75–83PubMedGoogle Scholar
  50. Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314PubMedGoogle Scholar
  51. McLaughlin RW, Chen M, Zheng J, Zhao Q, Wang D (2012) Analysis of the bacterial diversity in the fecal material of the endangered Yangtze finless porpoise, Neophocaena phocaenoides asiaeorientalis. Mol Biol Rep 39:5669–5676PubMedGoogle Scholar
  52. McLaughlin RW, Zheng JS, Ruan R, Wang CQ, Zhao QZ, Wang D (2013) Isolation of Robinsoniella peoriensis from the fecal material of the endangered Yangtze finless porpoise, Neophocaena asiaeorientalis asiaeorientalis. Anaerobe 20:79–81PubMedGoogle Scholar
  53. Mei ZG, Huang SL, Hao YJ, Turvey ST, Gong WM, Wang D (2012) Accelerating population decline of Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). Biol Conserv 153:192–200Google Scholar
  54. Merz AJ, So M (2000) Interactions of pathogenic Neisseriae with epithelial cell membranes. Annu Rev Cell Dev Biol 16:423–457PubMedGoogle Scholar
  55. Mulcahy H, Charron-Mazenod L, Lewenza S (2010) Pseudomonas aeruginosa produces an extracellular deoxyribonuclease that is required for utilization of DNA as a nutrient source. Environ Microbiol 12:1621–1629PubMedGoogle Scholar
  56. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79PubMedGoogle Scholar
  57. Okawa Y, Ohtomo Y, Tsugawa H, Matsuda Y, Kobayashi H, Tsukamoto T (2004) Isolation and characterization of a cytotoxin produced by Plesiomonas shigelloides. FEMS Microbiol Lett 239:125–130PubMedGoogle Scholar
  58. Ozdemir O, Sari S, Terzioglu S, Zenciroglu A (2010) Plesiomonas shigelloides sepsis and meningoencephalitis in a surviving neonate. J Microbiol Immunol Infect 43:344–346PubMedGoogle Scholar
  59. Palmer T, Berks BC (2012) The twin-arginine translocation (Tat) protein export pathway. Nat Rev Microbiol 10:483–496PubMedGoogle Scholar
  60. Palmer T, Sargent F, Berks BC (2010) The Tat protein export pathway. EcoSal Plus 4(1).
  61. Payne SM (1988) Iron and virulence in the family Enterobacteriaceae. Crit Rev Microbiol 16:81–111PubMedGoogle Scholar
  62. Pimenta AL, Racher K, Jamieson L, Blight MA, Holland IB (2005) Mutations in HlyD, part of the type 1 translocator for hemolysin secretion, affect the folding of the secreted toxin. J Bacteriol 187:7471–7480PubMedPubMedCentralGoogle Scholar
  63. Pradel N, Ye C, Livrelli V, Xu J, Joly B, Wu LF (2003) Contribution of the twin arginine translocation system to the virulence of enterohemorrhagic Escherichia coli O157:H7. Infect Immun 71:4908–4916PubMedPubMedCentralGoogle Scholar
  64. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650PubMedPubMedCentralGoogle Scholar
  65. Rodríguez-Rodríguez S, Santos JA (2018) Detection and characterization of the ferric uptake regulator (fur) gene in Plesiomonas shigelloides. Lett Appl Microbiol 66:347–351PubMedGoogle Scholar
  66. Rossier O, Cianciotto NP (2005) The Legionella pneumophila tatB gene facilitates secretion of phospholipase C, growth under iron-limiting conditions, and intracellular infection. Infect Immun 73:2020–2032PubMedPubMedCentralGoogle Scholar
  67. Rutala WA, Sarubbi FA Jr, Finch CS, MacCormack JN, Steinkraus GE (1982) Oyster-associated outbreak of diarrhoeal disease possibly caused by Plesiomonas shigelloides. Lancet 319:739Google Scholar
  68. Salerno A, Cižnár I, Krovacek K, Conte M, Dumontet S, González-Rey C, Pasquale V (2010) Phenotypic characterization and putative virulence factors of human, animal and environmental isolates of Plesiomonas shigelloides. Folia Microbiol (Praha) 55:641–647Google Scholar
  69. Santos JA, González CJ, Lopez TM, Otero A, Garíıa- López ML (1999) Hemolytic and elastolytic activities influenced by iron in Plesiomonas shigelloides. J Food Prot 62:1475–1477PubMedGoogle Scholar
  70. Schembri MA, Dalsgaard D, Klemm P (2004) Capsule shields the function of short bacterial adhesins. J Bacteriol 186:1249–1257PubMedPubMedCentralGoogle Scholar
  71. Shao S, Lai QL, Liu Q, Wu HZ, Xiao JF, Shao ZZ, Wang QY, Zhang YX (2015) Phylogenomics characterization of a highly virulent Edwardsiella strain ET080813T encoding two distinct T3SS and three T6SS gene clusters: propose a novel species as Edwardsiella anguillarum sp. nov. Syst Appl Microbiol 38:36–47PubMedGoogle Scholar
  72. Shimada T, Sakazaki R (1978) On the serology of Plesiomonas shigelloides. Jpn J Med Sci Biol 31:135–142PubMedGoogle Scholar
  73. Somers EB, Wong AC (2004) Efficacy of two cleaning and sanitizing combinations on Listeria monocytogenes biofilms formed at low temperature on a variety of materials in the presence of ready-to-eat meat residue. J Food Prot 67:2218–2229PubMedGoogle Scholar
  74. Tan YP, Zheng J, Tung SL, Rosenshine I, Leung KY (2005) Role of type III secretion in Edwardsiella tarda virulence. Microbiology 151:2301–2313PubMedGoogle Scholar
  75. Taylor SL (1986) Histamine food poisoning: toxicology and clinical aspects. Crit Rev Toxicol 17:91–128PubMedGoogle Scholar
  76. Tsugawa H, Ogawa A, Takehara S, Kimura M, Okawa Y (2008) Primary structure and function of a cytotoxic outer-membrane protein (ComP) of Plesiomonas shigelloides. FEMS Microbiol Lett 281:10–16PubMedGoogle Scholar
  77. Tsukamoto T, Kinoshita Y, Shimada T, Sakazaki R (1978) Two epidemics of diarrhoeal disease possibly caused by Plesiomonas shigelloides. J Hyg (London) 80:275–280Google Scholar
  78. Wan XL, McLaughlin RW, Zhou JY, Hao YJ, Zheng JS, Wang D (2016a) Isolation of culturable aerobic bacteria and evidence of Kerstersia gyiorum from the blowhole of captive Yangtze finless porpoises. Antonie Van Leeuwenhoek 109:1167–1175PubMedGoogle Scholar
  79. Wan XL, Ruan R, McLaughlin RW, Hao YJ, Zheng JS, Wang D (2016b) Fecal bacterial composition of the endangered Yangtze finless porpoises living under captive and semi-natural conditions. Curr Microbiol 72:306–314PubMedGoogle Scholar
  80. Wang D (2009) Population status, threats and conservation of the Yangtze finless porpoise. Chin Sci Bull 54:3473–3484Google Scholar
  81. Wang D, Turvey ST, Zhao XJ, Mei Z (2013) Neophocaena asiaeorientalis ssp. asiaeorientalis. The IUCN red list of threatened species. Version 2013.1. Accessed 16 July 2013
  82. Welch RA (1991) Pore-forming cytolysins of gram-negative bacteria. Mol Microbiol 5:521–528PubMedGoogle Scholar
  83. Xia FQ, Liu PN, Zhou YH (2015) Meningoencephalitis caused by Plesiomonas shigelloides in a Chinese neonate: case report and literature review. Ital J Pediatr 41:3PubMedPubMedCentralGoogle Scholar
  84. Yi J, Xiao SB, Zeng ZX, Lu JF, Liu LY, Laghari ZA, Nie P, Yu HB, Xie HX (2016) EseE of Edwardsiella tarda augments secretion of translocon protein EseC and expression of the escC-eseE operon. Infect Immun 84:36–2344Google Scholar
  85. Zhang L, Zhu Z, Jing H, Zhang J, Xiong Y, Yan M, Gao S, Wu LF, Xu J, Kan B (2009) Pleiotropic effects of the twin-arginine translocation system on biofilm formation, colonization, and virulence in Vibrio cholerae. BMC Microbiol 9:114PubMedPubMedCentralGoogle Scholar
  86. Zhao XJ, Barlow J, Taylor BI, Pitman RL, Wang KX, Wei Z, Brent S, Stewart SB, Turvey TS, Akamatsu T, Reeves RR, Wang D (2008) Abundance and conservation status of the Yangtze finless porpoise in the Yangtze River, China. Biol Conserv 141:306–318Google Scholar
  87. Zhou L, Shi M, Guo Z, Brisbon W, Hoover R, Yang H (2006) Different cytotoxic injuries induced by lysophosphatidylcholine and 7-ketocholesterol in mouse endothelial cells. Endothelium 13:213–226PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.General StudiesGateway Technical CollegeKenoshaUSA
  2. 2.The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  3. 3.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations