Antonie van Leeuwenhoek

, Volume 112, Issue 12, pp 1755–1766 | Cite as

Molecular identification and phylogenetic relationships of clinical Nocardia isolates

  • Ming Wei
  • Peng Wang
  • Chunxia Yang
  • Li GuEmail author
Original Paper


Species identification of Nocardia is difficult because of a complex and rapidly evolving taxonomy. In this study, gene sequencing (16S rRNA, gyrB, secA1, hsp65, rpoB), single 16S rRNA gene sequence phylogenetic analysis, and MALDI-TOF analysis were used to accurately identify 46 clinical Nocardia isolates to the species level. This provided a basis for establishing a routine method of multi-locus sequence analysis (MLSA) for molecular identification of Nocardia species. Genetic polymorphism analysis showed that MLSA was a powerfully discriminating method compared with the 16S rRNA gene to identify clinical Nocardia isolates. However, five-locus (gyrB-16S rRNA-secA1-hsp65-rpoB) MLSA led to misidentifications of all of the five Nocardia abscessus, which were confirmed by digital DNA-DNA hybridization (DDH) analysis. Interestingly, four strains identified as Nocardia beijingensis by a 16S rRNA gene phylogenetic tree may be novel species as suggested by DDH studies. For the purpose of achieving both accuracy and discrimination, the data of MLSA were reanalyzed. A three-locus MLSA with concatenated gyrB-16S rRNA-secA1 sequences was used to construct the phylogenetic tree with high accuracy and powerful discrimination. Therefore, a routine method of MLSA was developed to identify clinical Nocardia species.


Nocardia Identification MLSA Phylogenetic relationships 16S rRNA gene DNA-DNA hybridization 



The authors thank all staff members of the Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital (Beijing, China), for their contribution to this work.

Authors' contribution

LG and MW conceived the study. MW, PW, and CY performed the research. LG, MW, and PW analyzed data and wrote the paper. All authors read and approved the manuscript.


This work was supported by the National Science and Technology Major Project (Grant No. 2015ZX10003003).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10482_2019_1296_MOESM1_ESM.docx (435 kb)
Supplementary material 1 (DOCX 434 kb)


  1. Brown-Elliott BA, Brown JM, Conville PS, Wallace RJ (2006) Clinical and laboratory features of the Nocardia spp. based on current molecular taxonomy. Clin Microbiol Rev 19(2):259–282CrossRefGoogle Scholar
  2. Carrasco G, Valdezate S, Garrido N, Villalón P, Medina-Pascual MJ, Sáez-Nieto JA (2013) Identification, typing, and phylogenetic relationships of the main clinical Nocardia species in spain according to their gyrB and rpoB genes. J Clin Microbiol 51(11):3602–3608CrossRefGoogle Scholar
  3. Carrasco G, de Dios Caballero J, Garrido N, Valdezate S, Cantón R, Sáez-Nieto JA (2016) Shortcomings of the Commercial MALDI-TOF MS database and use of MLSA as an arbiter in the identification of Nocardia species. Front Microbiol 7:542. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Conville PS, Witebsky FG (2007) Organisms designated as Nocardia asteroides drug pattern type VI are members of the species Nocardia cyriacigeorgica. J Clin Microbiol 45(7):2257–2259CrossRefGoogle Scholar
  5. Conville PS, Brown-Elliott BA, Smith T, Zelazny AM (2018) The complexities of Nocardia taxonomy and identification. J Clin Microbiol 56(1):e01419-17CrossRefGoogle Scholar
  6. Daubin V, Moran NA, Ochman H (2003) Phylogenetics and the cohesion of bacterial genomes. Science 301(5634):829–832CrossRefGoogle Scholar
  7. Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14(7):685–695CrossRefGoogle Scholar
  8. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, de Peer YV, Vandamme P, Thompson FL, Swings J (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733CrossRefGoogle Scholar
  9. Girard V, Mailler S, Polsinelli S, Jacob D, Saccomani MC, Celliere B, Monnin V, van Belkum A, Hagen F, Meis JF, Durand G (2017) Routine identification of Nocardia species by MALDI-TOF mass spectrometry. Diagn Microbiol Infect Dis 87(1):7–10CrossRefGoogle Scholar
  10. Glupczynski Y, Berhin C, Janssens M, Wauters G (2006) Determination of antimicrobial susceptibility patterns of Nocardia spp. from clinical specimens by Etest. Clin Microbiol Infect 12(9):905–912CrossRefGoogle Scholar
  11. Goodfellow M, Kämpfer P, Busse HJ, Trujillo M, Suzuki KI, Ludwig W, Whitman W (2012) Bergey’s manual® of systematic bacteriologyGoogle Scholar
  12. Hashemi-Shahraki A, Heidarieh P, Bostanabad SZ, Hashemzadeh M, Feizabadi MM, Schraufnagel D, Mirsaeidi M (2015) Genetic diversity and antimicrobial susceptibility of Nocardia species among patients with nocardiosis. Sci Rep 5:17862CrossRefGoogle Scholar
  13. Hashimoto JG, Stevenson BS, Schmidt TM (2003) Rates and consequences of recombination between rRNA operons. J Bacteriol 185(3):966–972CrossRefGoogle Scholar
  14. Jones AL, Fisher AJ, Mahida R, Gould K, Perry JD, Hannan MM, Judge EP, Brown R, Boagey K, Goodfellow M (2014) Nocardia kroppenstedtii sp. nov., an actinomycete isolated from a lung transplant patient with a pulmonary infection. Int J Syst Evolut Microbiol 64(Pt 3):751–754CrossRefGoogle Scholar
  15. Khot PD, Bird BA, Durrant RJ, Fisher MA (2015) Identification of Nocardia species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 53(10):3366–3369CrossRefGoogle Scholar
  16. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evolut 16(2):111–120CrossRefGoogle Scholar
  17. Kong F, Chen SCA, Chen X, Sintchenko V, Halliday C, Cai L, Tong Z, Lee OC, Sorrell TC (2009) Assignment of reference 5′-end 16S rDNA sequences and species-specific sequence polymorphisms improves species identification of Nocardia. Open Microbiol J 3:97–105CrossRefGoogle Scholar
  18. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics (Oxford, England) 25(11):1451–1452CrossRefGoogle Scholar
  19. McNeil MM, Brown JM (1994) The medically important aerobic actinomycetes: epidemiology and microbiology. Clin Microbiol Rev 7(3):357–417CrossRefGoogle Scholar
  20. McTaggart LR, Richardson SE, Witkowska M, Zhang SX (2010) Phylogeny and identification of Nocardia species on the basis of multilocus sequence analysis. J Clin Microbiol 48(12):4525–4533CrossRefGoogle Scholar
  21. Michael G, Kämpfer P,Busse H-J, Trujillo M, Suzuki K-I, Ludwig W, Whitman W (2012) Bergey's manual® of systematic bacteriology. Google Scholar
  22. Rivera MC, Jain R, Moore JE, Lake JA (1998) Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci USA 95(11):6239–6244CrossRefGoogle Scholar
  23. Shneyer VS (2007) On the species-specificity of DNA: fifty years later. Biochemistry 72(12):1377–1384PubMedGoogle Scholar
  24. Verroken A, Janssens M, Berhin C, Bogaerts P, Huang TD, Wauters G, Glupczynski Y (2010) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nocardia species. J Clin Microbiol 48(11):4015–4021CrossRefGoogle Scholar
  25. Vetrovsky T, Baldrian P (2013) The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 8(2):e57923CrossRefGoogle Scholar
  26. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Truper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evolut Microbiol 37(4):463–464CrossRefGoogle Scholar
  27. Wei M, Wang P, Qu J, Li R, Liu Y, Gu L, Yang C (2017) Identification and antimicrobial susceptibility of clinical Nocardia species in a tertiary hospital in China. J Glob Antimicrob Resist 11:183–187CrossRefGoogle Scholar
  28. Witebsky FG, Conville PS, Wallace RJ Jr, Brown-Elliott BA, Huard RC, Schlaberg R, Della-Latta P (2008) Nocardia cyriacigeorgica–an established rather than an emerging pathogen. J Clin Microbiol 46(7):2469CrossRefGoogle Scholar
  29. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evolut Microbiol 67(5):1613–1617CrossRefGoogle Scholar
  30. Zhao P, Zhang X, Du P, Li G, Li L, Li Z (2017) Susceptibility profiles of Nocardia spp. to antimicrobial and antituberculotic agents detected by a microplate Alamar Blue assay. Sci Rep 7:43660CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang HospitalCapital Medical UniversityBeijingPeople’s Republic of China

Personalised recommendations