Antonie van Leeuwenhoek

, Volume 112, Issue 11, pp 1675–1689 | Cite as

Comparative transcriptomic analysis identified differentially expressed genes and pathways involved in the interaction between Tremella fuciformis and Annulohypoxylon stygium

  • Dongmei Liu
  • Dwi Pujiana
  • Yuanyuan Wang
  • Zhaosong Zhang
  • Liesheng Zheng
  • Liguo Chen
  • Aimin MaEmail author
Original Paper


Tremella fuciformis is an edible and medicinal white jelly mushroom. It has a life cycle that interacts with its companion fungus Annulohypoxylon stygium, both in natural conditions and artificial cultivation. RNA sequencing (RNA-Seq) was used to study the interaction between T. fuciformis and A. stygium by constructing 5 libraries, including the individual T. fuciformis mycelium (1), the T. fuciformis mycelium after interaction with A. stygium (2), the dual mycelia after interaction (3), the A. stygium mycelium after interaction with T. fuciformis (4), and the individual A. stygium mycelium (5). 33.4 G data and 46,871 Unigenes were generated from de novo splicing. For identification of differentially expressed genes (DEGs) related to interaction, we analyzed the expression data of DEGs1-vs-2 ∩ DEGs1-vs-3, and DEGs5-vs-4 ∩ DEGs5-vs-3. DEGs1-vs-2 ∩ DEGs1-vs-3, and DEGs5-vs-4 ∩ DEGs5-vs-3 data showed 614 DEGs and 1537 DEGs, respectively. The 614 DEGs for T. fuciformis and 1537 DEGs for A. stygium were analyzed by GO annotation and were assigned to biology process, cell composition, and molecular functions. The DEGs were used to match the KEGG database. In T. fuciformis, the pathways are primarily enriched various amino acids metabolism, pentose and glucuronate interconversions. In A. stygium, the pathways are primarily enriched in the biosynthesis of secondary metabolites, biosynthesis of antibiotics, starch and sucrose metabolism. The expression patterns of DEGs determined by qRT-PCR were consistent with those obtained by RNA-Seq, thus validating the reliability of our RNA-Seq data. Future studies of the functions of these interesting genes will be helpful to understand the mechanisms by which T. fuciformis interacts with A. stygium. This will also provide a reference for other research on interacting microorganisms.


Tremella fuciformis Annulohypoxylon stygium Interaction RNA sequencing Differentially expressed genes Pathway 



This research was supported by a grant from the National Natural Science Foundation of China (NSFC) (No. 31572182) to Aimin Ma.

Author’s contribution

DL and AM designed the experiments. DL and DP performed the experiments. YW and ZZ analyzed the data. DL wrote the manuscript. LZ, LC, and AM critically reviewed the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Bach E, Costa S, Oliveira H, Junior J, Silva K, Marco R, Hi EMB, Wadt NSY (2015) Use of polysaccharide extracted from Tremella fuciformis Berk for control diabetes induced in rats. Emir J Food Agric 27:585–591CrossRefGoogle Scholar
  2. Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Funct Plant Biol 30:57–64CrossRefGoogle Scholar
  3. Becker Y, Eaton CJ, Brasell E, May KJ, Becker M, Hassing B, Cartwright GM, Reinhold L, Scott B (2015) The fungal cell-wall integrity MAPK cascade is crucial for hyphal network formation and maintenance of restrictive growth of Epichloë festucae in symbiosis with Lolium perenne. Mol Plant Microbe Interact 28:69–85CrossRefGoogle Scholar
  4. Brauc S, De Vooght E, Claeys M, Höfte M, Angenon G (2011) Influence of over-expression of cytosolic aspartate aminotransferase on amino acid metabolism and defence responses against Botrytis cinerea infection in Arabidopsis thaliana. J Plant Physiol 168:1813–1819CrossRefGoogle Scholar
  5. Chang HY (1998) Mycelial properties of Tremella fuciformis and Hypoxylon sp. Kor J Mycol 26:321–326Google Scholar
  6. Chen CJ (1998) Morphological and molecular studies in the genus Tremella. Bibl Mycol 174:1–225Google Scholar
  7. Chen AW, Huang NL (2002) Mixed-culture cultivation of edible and medicinal mushroom Tremella fuciformis Berk. (Phragmobasidiomycetes) on synthetic logs. Int J Med Mushrooms 4:349–354Google Scholar
  8. Chen Y, Zhao L, Liu B, Zuo S (2012) Application of response surface methodology to optimize microwave-assisted extraction of polysaccharide from Tremella. Phys Procedia 24:429–433CrossRefGoogle Scholar
  9. Deng Y, van Peer AF, Lan FS, Wang QF, Jiang Y, Lian LD, Lu DM, Xie B (2016) Morphological and molecular analysis identifies the associated fungus (“Xianghui”) of the medicinal white jelly mushroom, Tremella fuciformis, as Annulohypoxylon stygium. Int J Med Mushrooms 18:253–260CrossRefGoogle Scholar
  10. Deng Y, Hsiang T, Li S, Lin L, Wang Q, Chen Q, Xie B, Ming R (2018) Comparison of the mitochondrial genome sequences of six Annulohypoxylon stygium isolates suggests short fragment insertions as a potential factor leading to larger genomic size. Front Microbiol 9:2079CrossRefGoogle Scholar
  11. Deveau A, Kohler A, Frey-Klett P, Martin F (2008) The major pathways of carbohydrate metabolism in the ectomycorrhizal basidiomycete Laccaria bicolor S238N. New Phytol 180:379–390CrossRefGoogle Scholar
  12. Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93:931–940CrossRefGoogle Scholar
  13. Freihorst D, Brunsch M, Wirth S, Krause K, Kniemeyer O, Linde J, Kunert M, Boland W, Kothe E (2018) Smelling the difference: transcriptome, proteome and volatilome changes after mating. Fungal Genet Biol 112:2–11CrossRefGoogle Scholar
  14. Gehrmann T, Pelkmans JF, Ohm RA, Vos AM, Sonnenberg ASM, Baars JJP, Wösten HAB, Reinders MJT, Abeel T (2018) Nucleus-specific expression in the multinuclear mushroom-forming fungus Agaricus bisporus reveals different nuclear regulatory programs. Proc Natl Acad Sci U S A 115:4429–4434CrossRefGoogle Scholar
  15. Hsieh HM, Ju YM, Rogers JD (2005) Molecular phylogeny of Hypoxylon and closely related genera. Mycologia 97:844–865CrossRefGoogle Scholar
  16. Igbaria A, Lev S, Rose MS, Lee BN, Hadar R, Degani O, Horwitz BA (2008) Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses. Mol Plant Microbe Interact 21:769–780CrossRefGoogle Scholar
  17. Lam HM, Coschigano K, Schultz C, Melo-Oliveira R, Tjaden G, Oliveira I, Ngai N, Hsieh MH, Coruzzi G (1995) Use of arabidopsis mutants and genes to study amide amino acid biosynthesis. Plant Cell 7:887–898PubMedPubMedCentralGoogle Scholar
  18. Li HT, Zhou H, Duan RT, Li HY, Tang LH, Yang XQ, Yang YB, Ding ZT (2019) Inducing secondary metabolite production by co-culture of the endophytic fungus Phoma sp. and the symbiotic fungus Armillaria sp. J Nat Prod 82:1009–1013CrossRefGoogle Scholar
  19. Li W, Sun YN, Lee C, Bang SH, Kim S, Ma JY, Kim YH, Shim SH (2017) Annulohpoxylotol A and B, new sesquiterpenoids from the endophytic fungus Annulohypoxylon truncatum, are natural NF-jB inhibitors. Arch Pharm Res 40:152–158CrossRefGoogle Scholar
  20. Maciel OMC, Tavares RSN, Caluz DRE, Gaspar LR, Debonsi HM (2018) Photoprotective potential of metabolites isolated from algae-associated fungi Annulohypoxylon stygium. J Photochem Photobiol B 178:316–322CrossRefGoogle Scholar
  21. Maddi A, Dettman A, Fu C, Seiler S, Free SJ (2012) WSC-1 and HAM-7 are MAK-1 MAP kinase pathway sensors required for cell wall integrity and hyphal fusion in Neurospora crassa. PLoS ONE 7:e42374CrossRefGoogle Scholar
  22. Menezes RC, Kai M, Krause K, Matthäus C, Svatoš A, Popp J, Kothe E (2015) Monitoring metabolites from Schizophyllum commune interacting with Hypholoma fasciculare combining LESA–HR mass spectrometry and Raman microscopy. Anal Bioanal 407:2273–2282CrossRefGoogle Scholar
  23. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349CrossRefGoogle Scholar
  24. Patyshakuliyeva A, Post H, Zhou M, Jurak E, Heck AJ, Hildén KS, Kabel MA, Mäkelä MR, Altelaar MA, de Vries RP (2015) Uncovering the abilities of Agaricus bisporus to degrade plant biomass throughout its life cycle. Environ Microbiol 17:3098–31109CrossRefGoogle Scholar
  25. Pelkmans JF, Vos AM, Scholtmeijer K, Hendrix E, Baars JJ, Gehrmann T, Reinders MJ, Lugones LG, Wösten HA (2016) The transcriptional regulator c2h2 accelerates mushroom formation in Agaricus bisporus. Appl Microbiol Biotechnol 100:7151–7159CrossRefGoogle Scholar
  26. Pelkmans JF, Patil MB, Gehrmann T, Reinders MJ, Wösten HA, Lugones LG (2017) Transcription factors of Schizophyllum commune involved in mushroom formation and modulation of vegetative growth. Sci Rep 7:310CrossRefGoogle Scholar
  27. Rosenthal AZ, Matson EG, Eldar A, Leadbetter JR (2011) RNA-seq reveals cooperative metabolic interactions between two termite-gut spirochete species in co-culture. ISME J 5:1133–1142CrossRefGoogle Scholar
  28. Surup F, Mohr KI, Jansen R, Stadler M (2013) Cohaerins G-K, azaphilone pigments from Annulohypoxylon cohaerens and absolute stereochemistry of cohaerins C-K. Phytochemistry 95:252–258CrossRefGoogle Scholar
  29. Surup F, Wiebach V, Kuhnert E, Stadler M (2016) Truncaquinones A and B, asterriquinones from Annulohypoxylon truncatum. Tetrahedron Lett 57:2813–2815CrossRefGoogle Scholar
  30. Ujor VC, Monti M, Peiris DG, Clements MO, Hedger JN (2012) The mycelial response of the white-rot fungus, Schizophyllum commune to the biocontrol agent, Trichoderma viride. Fungal Biol 116:332–341CrossRefGoogle Scholar
  31. Westermann AJ, Gorski SA, Vogel J (2012) Dual RNA-seq of pathogen and host. Nat Rev Microbiol 10:618–630CrossRefGoogle Scholar
  32. Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bähler J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243CrossRefGoogle Scholar
  33. Wingfield BD, Bills GF, Dong Y, Huang W, Nel WJ, Swalarsk-Parry BS, Vaghefi N, Wilken PM, An Z et al (2018) Draft genome sequence of Annulohypoxylon stygium, Aspergillus mulundensis, Berkeleyomyces basicola (syn. Thielaviopsis basicola), Ceratocystis smalleyi, two Cercospora beticola strains, Coleophoma cylindrospora, Fusarium fracticaudum, Phialophora cf. hyalina, and Morchella septimelata. IMA Fungus 9:199–223CrossRefGoogle Scholar
  34. Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17CrossRefGoogle Scholar
  35. Wu Y, Shan L, Yang S, Ma A (2008) Identification and antioxidant activity of melanin isolated from Hypoxylon archeri, a companion fungus of Tremella fuciformis. J Basic Microbiol 48:217–221CrossRefGoogle Scholar
  36. Wu YJ, Wei ZX, Zhang FM, Linhardt RJ, Sun PL, Zhang AQ (2019) Structure, bioactivities and applications of the polysaccharides from Tremella fuciformis mushroom: a review. Int J Biol Macromol 121:1005–1010CrossRefGoogle Scholar
  37. Yang XM (1954) Tremella fuciformis of China. Bull Biol 12:15–17 (In Chinese) Google Scholar
  38. Zhang L, Wang M (2016) Polyethylene glycol-based ultrasound-assisted extraction and ultrafiltration separation of polysaccharides from Tremella fuciformis (snow fungus). Food Bioprod Process 100:464–468CrossRefGoogle Scholar
  39. Zhang JX, Chen Q, Huang CY, Gao W, Qu JB (2015) History, current situation and trend of edible mushroom industry development. Mycosystema 34:524–540 (in Chinese with an English abstract) Google Scholar
  40. Zou Y, Hou X (2017) Extraction optimization, composition analysis, and antioxidation evaluation of polysaccharides from white jelly mushroom, Tremella fuciformis (Tremellomycetes). Int J Med Mushrooms 19:1113–1121CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dongmei Liu
    • 1
  • Dwi Pujiana
    • 1
  • Yuanyuan Wang
    • 1
  • Zhaosong Zhang
    • 1
  • Liesheng Zheng
    • 2
  • Liguo Chen
    • 2
  • Aimin Ma
    • 1
    • 3
    Email author
  1. 1.College of Food Science and TechnologyHuazhong Agricultural UniversityWuhanChina
  2. 2.College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
  3. 3.Key Laboratory of Agro-Microbial Resources and UtilizationMinistry of AgricultureWuhanChina

Personalised recommendations