Microvirga calopogonii sp. nov., a novel alphaproteobacterium isolated from a root nodule of Calopogonium mucunoides in Southwest China

  • Fang Wang
  • Lei Yang
  • Jia Deng
  • Xiaoyun Liu
  • Yanyuan Lu
  • Wenxin Chen
  • Jianrong WuEmail author
Original Paper


In this study, a Gram-negative, rod-shaped, and non-spore-forming bacterium, which was designated as strain CCBUA 65841T, was isolated from a root nodule of Calopogonium mucunoides grown in Yunan Province of China. The sequence alignment results of 16S rRNA and four housekeeping genes (including gyrB, recA, dnaK and rpoB) indicated the isolated strain is a member of the genus Microvirga, closely related to Microvirga lotononidis WSM3557T. In addition, results of genome average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) had revealed the lower values (ANI ≤ 88.72%, dDDH ≤ 39.5%) between strain CCABU 65841T and other related Microvirga species. The genome of the novel strain exhibits a G + C content of 64.48% and contains 7296 protein-coding genes and 93 RNA genes. The major polar lipids were found to be phosphatidylcholine and phosphatidylethanolamine. The predominant cellar fatty acids were identified to be C16:0, C18:0, C19:0 cyclo ω8c, summed feature 2, summed feature 3 and summed feature 8. Moreover, menaquinone 8 (MK-8) was detected to be the predominant quinone. Based on the phylogenetic and phenotypic dissimilarity, a novel species Microvirga calopogonii sp. nov. is proposed with the type strain CCABU 65841T (= LMG 25488 T = HAMBI 3033T).


Microvirga Calopogonium mucunoides ANI dDDH 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 31360003, 31460214, 31460181, and 31560211). We are grateful to BCCM/LMG and KCTC for providing the strains M. lupini Lut6T, M. lotononidis WSM3557T and M. pakistanensis NCCP-1258T.

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

10482_2019_1285_MOESM1_ESM.pptx (188 kb)
Supplementary material 1 (PPTX 188 kb)
10482_2019_1285_MOESM2_ESM.docx (21 kb)
Supplementary material 2 (DOCX 20 kb)


  1. Amin A, Ahmed I, Habib N et al (2016) Microvirga pakistanensis sp. nov., a novel bacterium isolated from desert soil of Cholistan, Pakistan. Arch Microbiol 198:933–939. CrossRefGoogle Scholar
  2. Ardley JK, Parker MA, De Meyer SE et al (2012) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 62:2579–2588. CrossRefGoogle Scholar
  3. Caputo A, Lagier JC, Azza S et al (2016) Microvirga massiliensis sp. nov., the human commensal with the largest genome. Microbiologyopen 5:307–322. CrossRefGoogle Scholar
  4. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354Google Scholar
  5. Dahal RH, Kim J (2017) Microvirga soli sp. nov., an alphaproteobacterium isolated from soil. Int J Syst Evol Microbiol 67:127–132. CrossRefGoogle Scholar
  6. Doetsch RN (1981) Determinative methods of light microscopy. Manual of methods for general bacteriology. American Society for Microbiology, Washington, DC, pp 21–33Google Scholar
  7. Gao JL, Sun JG, Li Y et al (1994) Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int J Syst Bacteriol 44:151–158. CrossRefGoogle Scholar
  8. Goris J, Konstantinidis KT, Klappenbach JA et al (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. CrossRefGoogle Scholar
  9. Hiraish A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by highperformance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469. CrossRefGoogle Scholar
  10. Kanso S, Patel BKC (2003) Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53:401–406. CrossRefGoogle Scholar
  11. Kim M, Oh H, Park S, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351. CrossRefGoogle Scholar
  12. Kohlerschmidt DJ, Musser KA, Dumas NB (2009) Identification of aerobic Gram-negative bacteria. In: Goldman E, Green LH (eds) Practical handbook of microbiology, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  13. Kumar S, Stecher G, Tamura K, Medicine E (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. CrossRefGoogle Scholar
  14. Kuykendall LD, Roy MA, Neill JJO, Devine TE (1988) Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobiurn japonicum. Int J Syst Bacteriol 38:358–361. CrossRefGoogle Scholar
  15. Lagesen K, Hallin P, Rødland EA et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. CrossRefGoogle Scholar
  16. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964. CrossRefGoogle Scholar
  17. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60. CrossRefGoogle Scholar
  18. Minnikin DE, O’donnell AG, Goodfellow M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241. CrossRefGoogle Scholar
  19. Nandasena KG, Hara GWO, Tiwari RP, Howieson JG (2007) In situ lateral transfer of symbiosis islands results in rapid evolution of diverse competitive strains of mesorhizobia suboptimal in symbiotic nitrogen fixation on the pasture legume Biserrula pelecinus L. Environ Micobiol 9:2496–2511. Google Scholar
  20. Radl V, Simões-Araújo JL, Leite J et al (2014) Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int J Syst Evol Microbiol 64:725–730. CrossRefGoogle Scholar
  21. Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106:19126–19131. CrossRefGoogle Scholar
  22. Safronova VI, Kuznetsova IG, Sazanova AL et al (2017) Microvirga ossetica sp. nov., a species of rhizobia isolated from root nodules of the legume species Vicia alpestris Steven. Int J Syst Evol Microbiol 67:94–100. CrossRefGoogle Scholar
  23. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 611–651Google Scholar
  24. Takeda M, Suzuki I, Koizumi JI (2004) Balneomonas flocculans gen. nov., sp. nov., a new cellulose-producing member of the α-2 subclass of proteobacteria. Syst Appl Microbiol 27:139–145. CrossRefGoogle Scholar
  25. Tapase SR, Mawlankar RB, Sundharam SS et al (2017) Microvirga indica sp. Nov., an arsenite-oxidizing Alphaproteobacterium, isolated from metal industry waste soil. Int J Syst Evol Microbiol 67:3525–3531. CrossRefGoogle Scholar
  26. Terefework Z, Kaijalainen S, Lindstro K (2001) AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis. J Biotechnol 91:169–180. CrossRefGoogle Scholar
  27. Tighe SW, De Lajudie P, Dipietro K, Lindstro K (2000) Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801. CrossRefGoogle Scholar
  28. Veyisoglu A, Tatar D, Saygin H et al (2016) Microvirga makkahensis sp. nov., and Microvirga arabica sp. nov., isolated from sandy arid soil. Antonie Van Leeuwenhoek 109:287–296. CrossRefGoogle Scholar
  29. Vincent JM (1970) A manual for the practical study of the root-nodule bacteria, International Biological Program. Blackwell Scientific Publication, Oxford and EdinburghGoogle Scholar
  30. Weon HY, Kwon SW, Son JA et al (2010) Description of Microvirga aerophila sp. nov. and Microvirga aerilata sp. nov., isolated from air, reclassification of Balneimonas flocculans Takeda et al. 2004 as Microvirga flocculans comb. nov. and emended description of the genus Microvirga. Int J Syst Evol Microbiol 60:2596–2600. CrossRefGoogle Scholar
  31. Yoon SH, Ha S, Lim J et al (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286. CrossRefGoogle Scholar
  32. Zhang J, Song F, Xin YH et al (2009) Microvirga guangxiensis sp. nov., a novel alphaproteobacterium from soil, and emended description of the genus Microvirga. Int J Syst Evol Microbiol 59:1997–2001. CrossRefGoogle Scholar
  33. Zhang JJ, Liu TY, Chen WF et al (2012) Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L in Xinjiang, China. Int J Syst Evol Microbiol 1:1. Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of EducationSouthwest Forestry UniversityKunmingPeople’s Republic of China
  2. 2.Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest ChinaSouthwest Forestry UniversityKunmingPeople’s Republic of China
  3. 3.College of Biological Sciences and Rhizobium Research CenterChina Agricultural UniversityBeijingPeople’s Republic of China
  4. 4.Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life SciencesHebei UniversityBaodingPeople’s Republic of China

Personalised recommendations