Antonie van Leeuwenhoek

, Volume 112, Issue 10, pp 1545–1552 | Cite as

Algoriphagus litoralis sp. nov., isolated from the junction between the ocean and a freshwater lake

  • Yuli WeiEmail author
  • Haiyan Mao
  • Ke Wang
  • Huimin Yao
  • Yan Zhang
  • Junwei Cao
  • Zhe Xie
  • Jiasong FangEmail author
Original Paper


A Gram-stain negative, non-motile and short rod shaped bacterium, designated strain DSL-12T, was isolated from seawater of the East China Sea and characterised phylogenetically and phenotypically. Optimal growth was found to occur at 28 °C (range 4–40 °C), pH 7 (range 6–12) and with 3% (w/v) NaCl (range 0–8%). Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain DSL-12T is related to members of the genus Algoriphagus and shares high sequence similarities with Algoriphagus boritolerans DSM 17298T (97.6%) and Algoriphagus alkaliphilus DSM 22703T (97.6%). The 16S rRNA gene sequence identities between strain DSL-12T and other current members of the genus Algoriphagus were below 96.4%. The digital DNA–DNA hybridization values between strain DSL-12T and the type strains A. boritolerans DSM 17298T and A. alkaliphilus DSM 22703T were found to be 21.2 ± 2.4% and 20.2 ± 2.4%, respectively. The average nucleotide identity (ANI) values between strain DSL-12T and A. boritolerans DSM 17298T and A. alkaliphilus DSM 22703T were found to be 83.2% and 82.8%, respectively. The sole respiratory quinone was identified as MK-7. The major polar lipids were identified as phosphatidylethanolamine, diphosphatidylglycerol, one unidentified phospholipid and two unidentified lipids. The major fatty acids identified as were iso-C15:0, summed feature 8 (C18:1ω7c and/or C18:1ω6c), C16:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c) and iso-C17:0. The G+C content of the genomic DNA was determined to be 43.3 mol%. The combined genotypic and phenotypic data indicate that strain DSL-12T represents a novel species of the genus Algoriphagus, for which the name Algoriphagus litoralis sp. nov. is proposed, with the type strain DSL-12T (= KCTC 62647T = MCCC 1K03536T).


Algoriphagus litoralis Polyphasic taxonomy Novel species 



Average nucleotide identity


DNA–DNA hybridization













This work is supported support by the National Natural Science Foundation of China (41773069, 91328208 and 41373071 to JF). YLW acknowledges the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars State Education Ministry (Grant No. D-8002-15-8004).

Compliance with ethical standard

Conflicts of interest

The authors declare that there are no conflicts of interest.

Ethical statement

This article does not contain any studies with animals performed by any of the authors.

Supplementary material

10482_2019_1280_MOESM1_ESM.pdf (492 kb)
Supplementary material 1 (PDF 491 kb)


  1. Ahmed I, Yokota A, Fujiwara T (2007) Chimaereicella boritolerans sp. nov., a boron-tolerant and alkaliphilic bacterium of the family Flavobacteriaceae isolated from soil. Int J Syst Evol Microbiol 57:986–992CrossRefPubMedGoogle Scholar
  2. Bowman JP, Nichols CM, Gibson JA (2003) Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 53:1343–1355CrossRefPubMedGoogle Scholar
  3. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, Da CM, Rooney AP, Yi H, Xu XW, De MS (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461CrossRefPubMedPubMedCentralGoogle Scholar
  4. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedPubMedCentralGoogle Scholar
  5. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91CrossRefPubMedGoogle Scholar
  6. Han JR, Geng QL, Wang FQ, Du ZJ, Chen GJ (2017a) Algoriphagus marinus sp. nov., isolated from marine sediment and emended description of the genus Algoriphagus. Int J Syst Evol Microbiol 67:2412–2417CrossRefPubMedGoogle Scholar
  7. Han JR, Zhao JX, Wang ZJ, Chen GJ, Du ZJ (2017b) Algoriphagus resistens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 67:1275–1280CrossRefPubMedGoogle Scholar
  8. Jia X, Jia B, Kim KH, Jeon CO (2017) Algoriphagus aestuariicola sp. nov., isolated from estuary sediment. Int J Syst Evol Microbiol 67:914–919CrossRefPubMedGoogle Scholar
  9. Jung YT, Lee JS, Yoon JH (2015) Algoriphagus aestuarii sp. nov., a member of the Cyclobacteriaceae isolated from a tidal-flat sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 65:3439–3446CrossRefPubMedGoogle Scholar
  10. Kang H, Weerawongwiwat V, Jung MY, Myung SC, Kim W (2013) Algoriphagus chungangensis sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 63:648–653CrossRefPubMedGoogle Scholar
  11. Kim H, Joung Y, Joh K (2014a) Algoriphagus taeanensis sp. nov., isolated from a tidal flat, and emended description of Algoriphagus hitonicola. Int J Syst Evol Microbiol 64:21–26CrossRefPubMedGoogle Scholar
  12. Kim M, Oh HS, Park SC, Chun J (2014b) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  14. Lee DH, Kahng HY, Lee SB (2012) Algoriphagus jejuensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 62:409–413CrossRefPubMedGoogle Scholar
  15. Li Y, Yan S, Yang Q, Qi Z, Zhang XH, Fu YB (2011) Algoriphagus faecimaris sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 61:2856–2860CrossRefPubMedGoogle Scholar
  16. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60CrossRefGoogle Scholar
  17. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  18. Oh KH, Kang SJ, Lee SY, Park S, Oh TK, Yoon JH (2012) Algoriphagus namhaensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 62:575–579CrossRefPubMedGoogle Scholar
  19. Park S, Kang SJ, Oh KH, Oh TK, Yoon JH (2010) Algoriphagus lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 60:200–204CrossRefPubMedGoogle Scholar
  20. Park S, Ha MJ, Yoon SY, Jung YT, Yoon JH (2016) Algoriphagus litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 66:5437–5443CrossRefPubMedGoogle Scholar
  21. Park S, Jung YT, Park JM, Yoon JH (2017a) Algoriphagus aquaemixtae sp. nov., isolated from water in an estuary environment. Int J Syst Evol Microbiol 67:3231–3236CrossRefPubMedGoogle Scholar
  22. Park S, Park JM, Yoon JH (2017b) Algoriphagus marisflavi sp. nov., isolated from water of an estuary environment. Int J Syst Evol Microbiol 67:4168–4174CrossRefPubMedGoogle Scholar
  23. Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131CrossRefPubMedPubMedCentralGoogle Scholar
  24. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  25. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc, NewarkGoogle Scholar
  26. Skerman V (1967) A guide to the identification of the genera of bacteria: with methods and digests of generic characteristics, 2nd edn. Williams & Wilkins, BaltimoreGoogle Scholar
  27. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155Google Scholar
  28. Sun QL, Sun L (2017) Description of Algoriphagus iocasae sp. nov., isolated from deep-sea sediment of Okinawa Trough. Int J Syst Evol Microbiol 67:243–249CrossRefPubMedGoogle Scholar
  29. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL (2013) Microbial genomic taxonomy. BMC Genom 14:913CrossRefGoogle Scholar
  30. Tiago I, Mendes V, Pires C, Morais PV, Veríssimo A (2006) Chimaereicella alkaliphila gen. nov., sp. nov., a Gram-negative alkaliphilic bacterium isolated from a nonsaline alkaline groundwater. Syst Appl Microbiol 29:100–108CrossRefPubMedGoogle Scholar
  31. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202CrossRefGoogle Scholar
  32. Tindall B, Sikorski J, Smibert R, Krieg N (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology, 3rd edn. American Society for Microbiology, Washington, pp 330–393Google Scholar
  33. Wayne L, Brenner DJ, Colwell RR, Grimont PAD, Kandler O (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464CrossRefGoogle Scholar
  34. Wei Y, Fang J, Xu Y, Zhao W, Cao J (2018) Corynebacterium hadale sp. nov. isolated from hadopelagic water of the New Britain Trench. Int J Syst Evol Microbiol 68:1474–1478CrossRefPubMedGoogle Scholar
  35. Ye MQ, Wang XT, Zhang J, Chen GJ, Du ZJ (2017) Algoriphagus formosus sp. nov., isolated from coastal sediment. Antonie Van Leeuwenhoek 111:913–920CrossRefPubMedGoogle Scholar
  36. Yoon JH, Lee MH, Kang SJ, Oh TK (2006) Algoriphagus terrigena sp. nov., isolated from soil. Int J Syst Evol Microbiol 56:777–780CrossRefPubMedGoogle Scholar
  37. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine SciencesShanghai Ocean UniversityShanghaiPeople’s Republic of China
  2. 2.State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth SciencesChina University of GeosciencesWuhanPeople’s Republic of China
  3. 3.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoPeople’s Republic of China
  4. 4.Department of Natural SciencesHawaii Pacific UniversityHonoluluUSA

Personalised recommendations