Advertisement

Antonie van Leeuwenhoek

, Volume 112, Issue 10, pp 1447–1456 | Cite as

Serratia microhaemolytica sp. nov., isolated from an artificial lake in Southern China

  • Juan Wang
  • Min-Ling Zheng
  • Jian-Yu Jiao
  • Wei-Jia Wang
  • Shuai Li
  • Min Xiao
  • Cha Chen
  • Ping-Hua QuEmail author
  • Wen-Jun LiEmail author
Original Paper
  • 95 Downloads

Abstract

A Gram-stain negative, facultatively anaerobic, rod-shaped, non-motile and non-spore forming bacterium, designated ZS-11T, was isolated from an artificial freshwater lake in Guangzhou city, Guangdong province, China. Growth of strain ZS-11T was observed at the temperature 18–42 °C (optimum 32–37 °C), pH 6.0–8.0 (optimum 7.0) and 0.5–3.0% (w/v) NaCl (optimum 0.5%, w/v), and also found to be enhanced in the presence of CO2. Pairwise comparison of 16S rRNA gene sequences showed that the strain shared high similarities with Serratia entomophila DSM 12358T (96.1%), Serratia ficaria DSM 4569T (96.0%), Serratia plymuthica DSM 4540T (96.0%), Rahnella victoriana FRB 225T (95.9%) and Rouxiella badensis DSM 100043T (95.8%). The phylogenomic dendrograms showed that strain ZS-11T formed a distinct cluster within the clade of the genus Serratia. The major fatty acids (> 20%) present in the cells were C16:0, C16:1ω7c/C16:1ω6c and C18:1ω7c/C18:1ω6c, which were consistent with those of S. entomophila CCUG 55496T and Serratia liquefaciens CCUG 9285T. The DNA G + C content for the genome was 49.3%. Based on these phenotypic and genotypic data, strain ZS-11T is considered to represent a new species of the genus Serratia, for which the name Serratia microhaemolytica sp. nov. is proposed. The type strain is ZS-11T (= CCTCC AB 2018040T = KCTC 62413T).

Keywords

Serratia microhaemolytica sp. nov. Artificial lake Polyphasic taxonomy 

Notes

Acknowledgements

P.-H. Qu was supported by Research Fund for Science and Technology Planning Project of Guangdong Province, China (2017A020215068). W.-J. Li was supported by the Guangdong Province Higher Vocational Colleges and Schools Pearl Scholar Founded Scheme (2014).

Author's contributions

WJL and PHQ designed research and project outline. JW, WJW, and CC performed isolation, deposition, phenotypic and biochemical characteristics identification, and molecular analysis. JJ, SL and MX performed the chemotaxonomy analysis. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10482_2019_1273_MOESM1_ESM.doc (160 kb)
Supplementary material 1 (DOC 161 kb)

References

  1. Adeolu M, Alnajar S, Naushad S, Gupta RS (2016) Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 66:5575–5599CrossRefPubMedGoogle Scholar
  2. Aslanzadeh J (2006) Biochemical profile-based microbial identification systems. In: Tang YW, Stratton CW (eds) Advanced techniques in diagnostic microbiology. Springer, New York, pp 87–121Google Scholar
  3. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466CrossRefPubMedPubMedCentralGoogle Scholar
  5. Clinical and Laboratory Standards Institute (2012) Performance standards for antimicrobial susceptibility testing. In: Twenty-eight informational supplement. CLSI Supplement document M100-S28. WayneGoogle Scholar
  6. Edelstein PH, Edelstein MA (2010) Comparison of the plating efficiencies and shelf lives of three different commercial buffered charcoal yeast extract media supplemented with alpha-ketoglutaric acid. J Clin Microbiol 48:1882–1883CrossRefPubMedPubMedCentralGoogle Scholar
  7. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  8. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1:406–416CrossRefGoogle Scholar
  10. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470CrossRefPubMedPubMedCentralGoogle Scholar
  11. Garcíafraile P, Chudíčková M, Benada O, Pikula J, Kolařík M (2015) Serratia myotis sp. nov. and Serratia vespertilionis sp. nov. isolated from bats hibernating in caves in the czech republic. Int J Syst Bacteriol 65:90–95CrossRefGoogle Scholar
  12. Geiger A, Fardeau ML, Falsen E, Ollivier B, Cuny G (2010) Serratia glossinae sp. nov. isolated from the midgut of the tsetse fly Glossina palpalis gambiensis. Int J Syst Bacteriol 60:1261–1270CrossRefGoogle Scholar
  13. Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov., an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715CrossRefGoogle Scholar
  14. Grimont G, Grimont PAD (2005) Genus XXXIV. Serratia. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology (The Proteobacteria), part B (The Gammaproteobacteria), vol 2, 2nd edn. Springer, New York, pp 799–805Google Scholar
  15. Hoffman PS, Pine L, Bell S (1983) Production of superoxide and hydrogen peroxide in medium used to culture Legionella pneumophila: catalytic decomposition by charcoal. Appl Environ Microbiol 45:784–791PubMedPubMedCentralGoogle Scholar
  16. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119–121CrossRefGoogle Scholar
  17. Kämpfer P, Glaeser SP (2016) Serratia aquatilis sp. nov., isolated from drinking water systems. Int J Syst Evol Microbiol 66:407–413CrossRefPubMedGoogle Scholar
  18. Kämpfer P, Nienhüser A, Packroff G, Wernicke F, Mehling A, Nixdorf K, Fiedler S, Kolauch C, Esser M (2008) Molecular identification of coliform bacteria isolated from drinking water reservoirs with traditional methods and the Colilert-18 system. Int J Hyg Environ Health 211:374–384CrossRefPubMedGoogle Scholar
  19. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for Bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  20. Liu L, Salam N, Jiao JY, Shun-Mei E, Chen C, Fang BZ, Xiao M, Li M, Li WJ, Qu PH (2017) Cysteiniphilum litorale gen. nov., sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 67:2178–2183CrossRefPubMedGoogle Scholar
  21. Ng V, Weir L, York MK, Hadley WK (1992) Bordetella pertussis versus non-L. pneumophila Legionella spp: a continuing diagnostic challenge. J Clin Microbiol 30:3300–3301PubMedPubMedCentralGoogle Scholar
  22. Nolte FS (1993) Use of selective buffered charcoal-yeast extract medium for isolation of nocardiae from mixed cultures. J Clin Microbiol 31:2554–2555PubMedPubMedCentralGoogle Scholar
  23. Qu PH, Deng XL, Zhang J, Chen JD, Zhang J, Zhang QX, Xiao Y, Chen SY (2009) Identification and characterization of the Francisella sp. strain 08HL01032 isolated in air condition systems. Acta Microbiol Sin 49:1003–1008Google Scholar
  24. Qu PH, Chen SY, Scholz HC, Busse HJ, Gu Q, Kämpfer P, Foster JT, Glaeser SP, Chen C, Yang ZC (2013) Francisella guangzhouensis sp. nov. isolated from air-conditioning systems. Int J Syst Evol Microbiol 63:3628–3635CrossRefPubMedGoogle Scholar
  25. Qu PH, Li Y, Salam N, Chen SY, Liu L, Gu Q, Fang BZ, Xiao M, Li M, Chen C, Li WJ et al (2016) Allofrancisella inopinata gen. nov. sp. nov. and Allofrancisella frigidaquae sp. nov. isolated from water-cooling systems and transfer of Francisella guangzhouensis Qu et al. 2013 to the new genus as Allofrancisella guangzhouensis comb. nov. Int J Syst Evol Microbiol 66:4832–4838CrossRefPubMedGoogle Scholar
  26. Raad I, Rand K, Gaskins D (1990) Buffered charcoal-yeast extract medium for the isolation of brucellae. J Clin Microbiol 28:1671–1672PubMedPubMedCentralGoogle Scholar
  27. Rameshkumar N, Lang E, Tanaka N (2016) Description of Vogesella oryzae sp. nov. isolated from the rhizosphere of saline tolerant pokkali rice. Syst Appl Microbiol 39:20–24CrossRefPubMedGoogle Scholar
  28. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  29. Sun C, Wang RJ, Su Y, Fu GY, Zhao Z, Yu XY, Zhang CY, Chen C, Han SB, Huang MM, Lv ZB, Wu M (2017) Hyphobacterium vulgare gen. nov. sp. nov. a novel alphaproteobacterium isolated from seawater. Int J Syst Evol Microbiol 67:1169–1176CrossRefPubMedGoogle Scholar
  30. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedPubMedCentralGoogle Scholar
  31. Wilson K (1997) Preparation of genomic DNA from bacteria. In: Ausubel FM et al (eds) Current protocols in molecular biology. Wiley, New York, pp 2.4.1–2.4.5Google Scholar
  32. Wu M, Scott AJ (2012) Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28:1033–1034CrossRefPubMedGoogle Scholar
  33. Xiao M, Salam N, Liu L, Jiao JY, Zheng ML, Wang J, Li S, Chen C, Li WJ, Qu PH (2018) Fastidiosibacter lacustris gen. nov., sp. nov., isolated from a lake water sample, and proposal of Fastidiosibacteraceae fam. nov. within the order Thiotrichales. Int J Syst Evol Microbiol 68:347–352CrossRefPubMedGoogle Scholar
  34. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov. sp. nov. a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153CrossRefPubMedGoogle Scholar
  35. Zhang CW, Zhang J, Zhao JJ, Zhao X, Zhang XX (2017) Serratia oryzae sp. nov. isolated from rice stems. Int J Syst Evol Microbiol 67:2928–2933CrossRefPubMedGoogle Scholar
  36. Zingg W, Soulake I, Baud D, Huttner B, Pfister R, Renzi G, Pittet D, Schrenzel J, Francois P (2017) Management and investigation of a Serratia marcescens, outbreak in a neonatal unit in Switzerland—the role of hand hygiene and whole genome sequencing. Antimicrob Resist Infect Control 6:125–130CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory Medicine Department, Zhongshan People’s HospitalThe Affiliated Hospital of Sun Yat-Sen UniversityZhongshanPeople’s Republic of China
  2. 2.The Second Clinic CollegeGuangzhou University of Chinese MedicineGuangzhouPeople’s Republic of China
  3. 3.Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangdong Provincial Hospital of Traditional Chinese MedicineGuangzhouPeople’s Republic of China
  4. 4.State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  5. 5.College of FisheriesHenan Normal UniversityXinxiangPeople’s Republic of China

Personalised recommendations