Antonie van Leeuwenhoek

, Volume 112, Issue 8, pp 1273–1280 | Cite as

Antibiotic susceptibility of marine Planctomycetes

  • Ofélia Godinho
  • Rita Calisto
  • Lise Øvreås
  • Sandra Quinteira
  • Olga Maria LageEmail author
Short Communication


Antimicrobials are naturally produced by microbes and therefore have always been present in their environment, as well as accompanying resistance mechanisms. The antibiotic resistance profile of environmental species is particularly relevant since genetic determinants of resistance can spread through horizontal gene transfer and reach clinically important species. The phylum Planctomycetes comprises Gram-negative bacteria characterised by unusual features and appear to be ubiquitously distributed. Members of this group have recently been characterised as producers of bioactive compounds, namely antimicrobials, but their antibiotic susceptibility profile has been scarcely studied. In this study, the antibiotic susceptibility profile of six phylogenetically distinct strains of Planctomycetes was assessed. All strains showed resistance to beta-lactams, aminoglycosides and glycopeptides. Our results showed that antibiotics which target protein synthesis or DNA replication, with the exception of aminoglycosides, were the most effective against the tested strains. The highest efficacy was observed for chloramphenicol, clindamycin and ciprofloxacin. The highest level of antimicrobial resistance was observed in the uncharacterised novel taxon Planctomyces sp. strain FF15 which was only susceptible to erythromycin and ciprofloxacin.


Antibiotic Bacteria Planctomycetes Resistance 



This research was partially supported by the Strategic Funding UID/Multi/04423/2013 through national funds provided by FCT—Foundation for Science and Technology and European Regional Development Fund (ERDF).

Authors’ contribution

OG: experimental work and drafting of the manuscript; RC: experimental work and drafting of the manuscript; LO: drafting and final revision of the manuscript; SQ: experimental work and drafting and final revision of the manuscript; OML: design of the experimental work, experimental work and drafting and final revision of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10482_2019_1259_MOESM1_ESM.docx (788 kb)
Supplementary material 1 (DOCX 788 kb)


  1. Abed RM, Musat N, Musat F, Mussmann M (2011) Structure of microbial communities and hydrocarbon-dependent sulfate reduction in the anoxic layer of a polluted microbial mat. Mar Pollut Bull 62:539–546. CrossRefGoogle Scholar
  2. Aghnatios R, Drancourt M (2016) Gemmata species: Planctomycetes of medical interest. Future Microbiol 11:659–667. CrossRefGoogle Scholar
  3. Aghnatios R, Cayrou C, Garibal M, Robert C, Azza S, Raoult D, Drancourt M (2015) Draft genome of Gemmata massiliana sp. nov, a water-borne Planctomycetes species exhibiting two variants. Stand Genomic Sci 10:120. CrossRefGoogle Scholar
  4. Akob DM, Mills HJ, Kostka JE (2007) Metabolically active microbial communities in uranium-contaminated subsurface sediments. FEMS Microbiol Ecol 59:95–107. CrossRefGoogle Scholar
  5. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496CrossRefGoogle Scholar
  6. Bernander R, Ettema TJ (2010) FtsZ-less cell division in archaea and bacteria. Curr Opin Microbiol 13:747–752. CrossRefGoogle Scholar
  7. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51. CrossRefGoogle Scholar
  8. Bockstael K, Van Aerschot A (2009) Antimicrobial resistance in bacteria. Central Eur J Med 4:141. Google Scholar
  9. Boedeker C et al (2017) Determining the bacterial cell biology of Planctomycetes. Nat Commun 8:14853. CrossRefGoogle Scholar
  10. Brummer IH, Felske AD, Wagner-Dobler I (2004) Diversity and seasonal changes of uncultured Planctomycetales in river biofilms. Appl Environ Microbiol 70:5094–5101. CrossRefGoogle Scholar
  11. Calisto R, Sæbø EF, Storesund JE, Øvreås L, Herfindal L, Lage OM (2019) Anticancer activity in Planctomycetes. Front Mar Sci. Google Scholar
  12. Cayrou C, Raoult D, Drancourt M (2010) Broad-spectrum antibiotic resistance of Planctomycetes organisms determined by Etest. J Antimicrob Chemother 65:2119–2122. CrossRefGoogle Scholar
  13. Cayrou C, Sambe B, Armougom F, Raoult D, Drancourt M (2013) Molecular diversity of the Planctomycetes in the human gut microbiota in France and Senegal. APMIS 121:1082–1090. CrossRefGoogle Scholar
  14. Clinical and Laboratory Standards Institute – CLSI (2007) Seventeenth informational supplement: performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute – CLSI, Pennsylvania. ISBN 1-56238-625-5Google Scholar
  15. Cohen-Bazire G, Sistrom WR, Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49:25–68. CrossRefGoogle Scholar
  16. Cundliffe E (1992) Self-protection mechanisms in antibiotic producers. Ciba Found Symp 171:199–208Google Scholar
  17. Devos DP, Ward NL (2014) Mind the PVCs. Environ Microbiol 16:1217–1221. CrossRefGoogle Scholar
  18. Drancourt M, Prebet T, Aghnatios R, Edouard S, Cayrou C, Henry M, Blaise D, Raoult D (2014) Planctomycetes DNA in febrile aplastic patients with leukemia, rash, diarrhea, and micronodular pneumonia. J Clin Microbiol 52:3453–3455. CrossRefGoogle Scholar
  19. Falagas ME, Kasiakou SK, Saravolatz LD (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant Gram-negative bacterial infections. Clin Infect Dis 40:1333–1341. CrossRefGoogle Scholar
  20. Falagas ME, Grammatikos AP, Michalopoulos A (2008) Potential of old-generation antibiotics to address current need for new antibiotics. Expert Rev Anti-infective Ther 6:593–600. CrossRefGoogle Scholar
  21. Faria M, Bordin N, Kizina J, Harder J, Devos D, Lage OM (2018) Planctomycetes attached to algal surfaces: insight into their genomes. Genomics 110:231–238. CrossRefGoogle Scholar
  22. Fuerst JA (1995) The planctomycetes: emerging models for microbial ecology, evolution and cell biology. Microbiology 141(Pt 7):1493–1506. CrossRefGoogle Scholar
  23. Garner E et al (2018) Metagenomic characterization of antibiotic resistance genes in full-scale reclaimed water distribution systems and corresponding potable systems. Environ Sci Technol 52:6113–6125. CrossRefGoogle Scholar
  24. Graça AP, Calisto R, Lage OM (2016) Planctomycetes as novel source of bioactive molecules. Front Microbiol 7:1241. CrossRefGoogle Scholar
  25. Halter D et al (2011) Taxonomic and functional prokaryote diversity in mildly arsenic-contaminated sediments. Res Microbiol 162:877–887. CrossRefGoogle Scholar
  26. Hu Z, van Alen T, Jetten MSM, Kartal B (2013) Lysozyme and penicillin inhibit the growth of anaerobic ammonium-oxidizing Planctomycetes. Appl Environ Microbiol 79:7763CrossRefGoogle Scholar
  27. Izumi H, Sagulenko E, Webb RI, Fuerst JA (2013) Isolation and diversity of planctomycetes from the sponge Niphates sp., seawater, and sediment of Moreton Bay, Australia. Antonie Van Leeuwenhoek 104:533–546. CrossRefGoogle Scholar
  28. Jeske O, Jogler M, Petersen J, Sikorski J, Jogler C (2013) From genome mining to phenotypic microarrays: Planctomycetes as source for novel bioactive molecules. Antonie Van Leeuwenhoek 104:551–567. CrossRefGoogle Scholar
  29. Jeske O, Schuler M, Schumann P, Schneider A, Boedeker C, Jogler M, Bollschweiler D, Rohde M, Mayer C, Engelhardt H, Spring S, Jogler C (2015) Planctomycetes do possess a peptidoglycan cell wall. Nat Commun 6:7116. CrossRefGoogle Scholar
  30. Jeske O, Surup F, Ketteniss M, Rast P, Forster B, Jogler M, Wink J, Jogler C (2016) Developing techniques for the utilization of Planctomycetes as producers of bioactive molecules. Front Microbiol 7:1242. CrossRefGoogle Scholar
  31. Jogler C, Waldmann J, Huang X, Jogler M, Glockner FO, Mascher T, Kolter R (2012) Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics. J Bacteriol 194:6419–6430. CrossRefGoogle Scholar
  32. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evolut 33:1870–1874. CrossRefGoogle Scholar
  33. Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:417–434. CrossRefGoogle Scholar
  34. Kurenbach B, Marjoshi D, Amabile-Cuevas CF, Ferguson GC, Godsoe W, Gibson P, Heinemann JA (2015) Sublethal exposure to commercial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium. MBio. Google Scholar
  35. Lage OM, Bondoso J (2011) Planctomycetes diversity associated with macroalgae. FEMS Microbiol Ecol 78:366–375. CrossRefGoogle Scholar
  36. Lage O, Bondoso J (2012) Bringing Planctomycetes into pure culture. Front Microbiol. Google Scholar
  37. Lage OM, Bondoso J (2014) Planctomycetes and macroalgae, a striking association. Front Microbiol 5:267. CrossRefGoogle Scholar
  38. Lage OM, Bondoso J, Lobo-da-Cunha A (2013) Insights into the ultrastructural morphology of novel Planctomycetes. Antonie Van Leeuwenhoek 104:467–476. CrossRefGoogle Scholar
  39. Michalopoulos AS, Livaditis IG, Gougoutas V (2011) The revival of fosfomycin International journal of infectious diseases. IJID: Off Publ Int Soc Infect Dis 15:e732–739. Google Scholar
  40. Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr. Google Scholar
  41. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, OxfordGoogle Scholar
  42. Neu HC (1992) The crisis in antibiotic resistance. Science 257:1064CrossRefGoogle Scholar
  43. Park JW et al (2011) Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat Chem Biol 7:843. CrossRefGoogle Scholar
  44. Pearson A, Budin M, Brocks JJ (2003) Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci U S A 100:15352–15357. CrossRefGoogle Scholar
  45. Perry J, Waglechner N, Wright G (2016) The prehistory of antibiotic resistance. Cold Spring Harb Perspect Med. Google Scholar
  46. Quinteira S, Peixe L (2006) Multiniche screening reveals the clinically relevant metallo-beta-lactamase VIM-2 in Pseudomonas aeruginosa far from the hospital setting: an ongoing dispersion process? Appl Environ Microbiol 72:3743–3745. CrossRefGoogle Scholar
  47. Rivas-Marín E, Devos DP (2018) The paradigms they are a-Changin’: past, present and future of PVC bacteria research. Antonie van Leeuwenhoek 111:785–799. CrossRefGoogle Scholar
  48. Ruiz J, Gómez J, Navia MM, Ribera A, Sierra JM, Marco F, Mensa J, Vila J (2002) High prevalence of nalidixic acid resistant, ciprofloxacin susceptible phenotype among clinical isolates of Escherichia coli and other Enterobacteriaceae. Diagn Microbiol Infect Dis 42:257–261. CrossRefGoogle Scholar
  49. Santarella-Mellwig R, Franke J, Jaedicke A, Gorjanacz M, Bauer U, Budd A, Mattaj IW, Devos DP (2010) The compartmentalized bacteria of the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum have membrane coat-like proteins. PLoS Biol 8:e1000281. CrossRefGoogle Scholar
  50. Schlesner H (1994) The development of media suitable for the microorganisms morphologically resembling Planctomyces spp., Pirellula spp., and other Planctomycetales from various aquatic habitats using dilute media. Syst Appl Microbiol 17:135–145. CrossRefGoogle Scholar
  51. Schmidt JM, Starr MP (1979) Morphotype V of the Blastocaulis-Planctomyces group of budding and appendaged bacteria: Planctomyces guttaeformis Hortobágyi (sensu Hajdu). Curr Microbiol 2:195–200. CrossRefGoogle Scholar
  52. Storesund JE, Ovreas L (2013) Diversity of Planctomycetes in iron-hydroxide deposits from the Arctic Mid Ocean Ridge (AMOR) and description of Bythopirellula goksoyri gen. nov., sp. nov., a novel Planctomycete from deep sea iron-hydroxide deposits. Antonie Van Leeuwenhoek 104:569–584. CrossRefGoogle Scholar
  53. Storesund JE, Lanzen A, Garcia-Moyano A, Reysenbach AL, Ovreas L (2018) Diversity patterns and isolation of Planctomycetes associated with metalliferous deposits from hydrothermal vent fields along the Valu Fa Ridge (SW Pacific). Antonie Van Leeuwenhoek 111:841–858. CrossRefGoogle Scholar
  54. van Teeseling MCF, Mesman RJ, Kuru E, Espaillat A, Cava F, Brun YV, van Nieuwenhze MS, Kartal B, van Niftrik L (2015) Anammox Planctomycetes have a peptidoglycan cell wall. Nat Commun 6:6878. CrossRefGoogle Scholar
  55. Vignaroli C, Pasquaroli S, Citterio B, Di Cesare A, Mangiaterra G, Fattorini D, Biavasco F (2018) Antibiotic and heavy metal resistance in enterococci from coastal marine sediment. Environ Pollut 237:406–413. CrossRefGoogle Scholar
  56. WHO (2014) Antimicrobial resistance: global report on surveillance 2014. World Health Organization.
  57. Wiegand S, Jogler M, Jogler C (2018) On the maverick Planctomycetes. FEMS Microbiol Rev. Google Scholar
  58. Wilson DN (2013) Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 12:35. CrossRefGoogle Scholar
  59. Wright GD (2010) Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol 13:589–594. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de BiologiaUniversidade de AveiroAveiroPortugal
  2. 2.Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  3. 3.CIIMAR/CIMAR–Centro Interdisciplinar de Investigação Marinha e Ambiental–Universidade do Porto, Terminal de Cruzeiros do Porto de LeixõesMatosinhosPortugal
  4. 4.Department of Biological SciencesUniversity of BergenBergenNorway
  5. 5.University Center in Svalbard, UNISLongyearbyenNorway
  6. 6.CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto (CIBIO/UP)/InBio Laboratório AssociadoVairãoPortugal
  7. 7.CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da SaúdeGandra, PRDPortugal

Personalised recommendations