Advertisement

Antonie van Leeuwenhoek

, Volume 112, Issue 8, pp 1137–1145 | Cite as

Microbispora tritici sp. nov., a novel actinomycete isolated from a root of wheat (Triticum aestivum L.)

  • Chuanyu Han
  • Junwei Zhao
  • Bing Yu
  • Haoran Shi
  • Chen Zhang
  • Xiaowei Guo
  • Wensheng XiangEmail author
  • Xiangjing WangEmail author
Original Paper

Abstract

A novel actinomycete, designated strain NEAU-HRGS1-13T, was isolated from a root of wheat (Triticum aestivum L.) and characterised using a polyphasic approach. Morphological and chemotaxonomic characteristics were consistent with those of members of the genus Microbispora. The major menaquinones were identified as MK-9(H2) and MK-9(H4) and the whole cell hydrolysates found to contain meso-diaminopimelic acid and madurose. The phospholipid profile was found to consist of diphosphatidylglycerol, a ninhydrin-positive glycophospholipid, phosphatidylinositol mannosides, phosphatidylmonomethylethanolamine, an unidentified glycolipid and an unidentified lipid. The major fatty acids were identified as iso-C16:0, C16:0, 10-methyl C17:0, C18:0 and C17:0. The 16S rRNA gene sequence analysis showed that the isolate is closely related to Microbispora triticiradicis NEAU-HRDPA2-9T (99.4%), Microbispora bryophytorum NEAU-TX2-2T (99.0%), Microbispora camponoti 2C-HV3T (98.8%), Microbispora hainanensis DSM 45428T (98.8%), Microbispora amethystogenes JCM 3021T (98.6%), Microbispora siamensis NBRC 104113T (98.5%), Microbispora corallina JCM 10267T (98.3%) and Microbispora rosea subsp. rosea JCM 3006T (98.2%). However, DNA–DNA relatedness and cultural, physiological and biochemical data showed that strain NEAU-HRGS1-13T can be distinguished from its close relatives. Therefore, it is concluded that strain NEAU-HRGS1-13T represents a novel species of the genus Microbispora, for which the name Microbispora tritici sp. nov. is proposed. The type stain is NEAU-HRGS1-13T (= CGMCC 4.7402T = DSM 104650T).

Keywords

Microbispora tritici sp. nov. Polyphasic taxonomy 16S rRNA gene 

Notes

Acknowledgements

We are grateful to Professor Aharon Oren for helpful advice on the specific epithet.

Author’s Contribution

Chuanyu Han performed the laboratory experiments, analyzed the data, and drafted the manuscript. Bing Yu contributed to the biochemical characterization. Junwei Zhao contributed to the polyphasic taxonomy. Haoran Shi contributed to the morphological analyzes. Chen Zhang contributed to the fatty acids determination. Xiaowei Guo participated to the discussions of each section of experiments. Xiangjing Wang and Wensheng Xiang designed the experiments and revised the manuscript.

Funding

This work was supported in part by Grants from the National Key Research and Development Plan (No. 2017YFD0201606), the China Postdoctoral Science Foundation (2018M631907) and the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2017017).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10482_2019_1246_MOESM1_ESM.docx (3.7 mb)
Supplementary material 1 (DOCX 3814 kb)

References

  1. Atlas RM (1993) Handbook of microbiological media. In: Parks LC (ed) Microbiology. CRC Press, Boca RatonGoogle Scholar
  2. Boondaeng A, Ishida Y, Tamura T, Tokuyama S (2009) Kitpreechavanich V. Microbispora siamensis sp. nov., a thermotolerant actinomycete isolated from soil. Int J Syst Evol Microbiol 509:3136–3139CrossRefGoogle Scholar
  3. Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–284Google Scholar
  4. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142CrossRefPubMedGoogle Scholar
  5. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  6. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  7. Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2014) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie Van Leeuwenhoek 105:307–315CrossRefPubMedGoogle Scholar
  8. Goodfellow M, Stanton LJ, Simpson KE, Minnikin DE (1990) Numerical and chemical classification of Actinoplanes and some related actinomycetes. J Gen Microbiol 136:19–36CrossRefGoogle Scholar
  9. Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63CrossRefGoogle Scholar
  10. Guan XJ, Liu CX, Zhao JW, Fang BZ, Zhang YJ, Li LJ, Jin PJ, Zhao JW, Xiang WS (2015) Streptomyces maoxianensis sp. nov., a novel actinomycete isolated from soil in Maoxian, China. Antonie Van Leeuwenhoek 107:1119–1126CrossRefPubMedGoogle Scholar
  11. Han CY, Liu CX, Zhao JW, Guo LF, Lu C, Li JS, Jia FY, Wang XJ, Xiang WS (2016) Microbispora camponoti sp. nov., a novel actinomycete isolated from the cuticle of Camponotus japonicus Mayr. Antonie Van Leeuwenhoek 109:215–223CrossRefPubMedGoogle Scholar
  12. Han CY, Tian YY, Zhao JW, Yu Z, Jiang S, Guo X, Xiang W, Wang X (2018) Microbispora triticiradicis sp. nov., a novel actinomycete isolated from the root of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 68:3600–3605CrossRefPubMedGoogle Scholar
  13. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192CrossRefPubMedGoogle Scholar
  14. Jia FY, Liu CX, Wang XJ, Zhao JW, Liu QF, Zhang J, Gao RX, Xiang WS (2013) Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie Van Leeuwenhoek 103:399–408CrossRefPubMedGoogle Scholar
  15. Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145PubMedPubMedCentralGoogle Scholar
  16. Kelly KL (1964) Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors. US Government Printing Office, Washington, DCGoogle Scholar
  17. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036CrossRefPubMedGoogle Scholar
  18. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  19. Kumar S, Stecher G, Tamura K (2016) Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291Google Scholar
  21. Li C, Zhang YJ, Liu CX, Wang HY, Zhao JW, Li LJ, Zhang ZW, Wang XJ, Xiang WS (2015) Microbispora bryophytorum sp. nov., an actinomycete isolated from moss (Bryophyta). Int J Syst Evol Microbiol 65:1274–1279CrossRefPubMedGoogle Scholar
  22. Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206CrossRefGoogle Scholar
  23. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Se-viour RJ (2000) A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 30:178–182CrossRefPubMedGoogle Scholar
  24. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  25. Miyadoh S, Amano S, Tohyama H, Shomura T (1990) A taxonomic review of the genus Microbispora and a proposal to transfer two species to the genus Actinomadura and to combine ten species into Microbispora rosea. J Gen Microbiol 136:1905–1913CrossRefPubMedGoogle Scholar
  26. Nakajima Y, Kitpreechavanich V, Suzuki K, Kudo T (1999) Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil. Int J Syst Bacteriol 49:1761–1767CrossRefPubMedGoogle Scholar
  27. Nonomura H, Ohara Y (1957) Distribution of actinomycetes in soil. II. Microbispora, a new genus of the Streptomycetaceae. J Ferment Technol 35:307–311Google Scholar
  28. Nonomura H, Ohara Y (1960) Distribution of the actinomycetes in soil. IV. The isolation and classification of the genus Microbispora. J Ferment Technol 38:401–405Google Scholar
  29. Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110:455–456CrossRefPubMedGoogle Scholar
  30. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  31. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  32. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  33. Waksman SA (1961) The Actinomycetes, vol. 2, Classification, identification and descriptions of genera and species. Williams and Wilkins, BaltimoreGoogle Scholar
  34. Waksman SA (1967) The Actinomycetes, a summary of current knowledge. Ronald, New YorkGoogle Scholar
  35. Wang XJ, Zhao JW, Liu CX, Wang JD, Shen Y, Jia FY, Wang L, Zhang J, Yu C, Xiang WS (2013) Nonomuraea solani sp. nov., a novel actinomycete isolated from eggplant root (Solanum melongena L.). Int J Syst Evol Microbiol 63:2418–2423CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  37. Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 16:176–178 [English translation of Microbiology (Beijing)] Google Scholar
  38. Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169CrossRefPubMedGoogle Scholar
  39. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153CrossRefPubMedGoogle Scholar
  40. Xu XX, Wang HL, Lin HP, Wang C, Qu Z, Xie QY, Ruan JS, Hong K (2012) Microbispora hainanensis sp. nov., isolated from rhizosphere soil of Excoecaria agallocha in a mangrove. Int J Syst Evol Microbiol 62:2430–2434CrossRefPubMedGoogle Scholar
  41. Yokota A, Tamura T, Hasegawa T, Huang LH (1993) Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812CrossRefGoogle Scholar
  42. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chuanyu Han
    • 1
  • Junwei Zhao
    • 1
  • Bing Yu
    • 1
  • Haoran Shi
    • 1
  • Chen Zhang
    • 1
  • Xiaowei Guo
    • 1
  • Wensheng Xiang
    • 1
    • 2
    Email author
  • Xiangjing Wang
    • 1
    Email author
  1. 1.Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education CommitteeNortheast Agricultural UniversityHarbinPeople’s Republic of China
  2. 2.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations