Antonie van Leeuwenhoek

, Volume 112, Issue 8, pp 1121–1136 | Cite as

Bacterial community pattern along the sediment seafloor of the Arctic fjorden (Kongsfjorden, Svalbard)

  • Xiao-Mei Fang
  • Tao Zhang
  • Jun Li
  • Neng-Fei Wang
  • Zhen Wang
  • Li-Yan YuEmail author
Original Paper


The Arctic region has been the focus of increasing attention as an ecosystem that is highly sensitive to changes associated with global warming. Although it was assumed to be vulnerable to changes in climate, a limited number of studies have been conducted on the surface sediment bacteria of Arctic fjorden. This study assessed the diversity and distribution pattern of bacterial communities in eight marine sediments along the seafloor in a high Arctic fjorden (Kongsfjorden, Svalbard). A total of 822 operational taxonomic units (OTUs) were identified by Illumina MiSeq sequencing, targeting the V3–V4 hypervariable regions of the 16S rRNA gene. In these surface marine sediments, more than half of the sequences belonged to the phylum Proteobacteria, followed by Bacteroidetes, Verrucomicrobia, Actinobacteria, Chloroflexi and Lentisphaerae. The bacterial genera Marinicella, Desulfobulbus, Lutimonas, Sulfurovum and clade SEEP-SRB4 were dominant in all samples. Analysis of similarity indicated that bacterial communities were significantly different among the inner, central and outer basins (r2 = 0.5, P = 0.03 < 0.05). Canonical correspondence analysis and permutation tests revealed that location depth (r2 = 0.87, P < 0.01), temperature (r2 = 0.88, P < 0.01) and salinity (r2 = 0.88, P < 0.05) were the most significant factors that correlated with the bacterial communities in the sediments. 28 differentially abundant taxonomic clades in the inner and outer basin with an LDA score higher than 2.0 were found by the LEfSe method. The Spearman correlation heat map revealed different degrees of correlation between most major OTUs and environmental factors, while some clades have an inverse correlation with environmental factors. The spatial patterns of bacterial communities along the Kongsfjorden may offer insight into the ecological responses of prokaryotes to climate change in the Arctic ecosystem, which makes it necessary to continue with monitoring.


Bacterial community pattern High Arctic Kongsfjorden Illumina MiSeq sequencing Marine sediments 



This research was supported by the National Infrastructure of Microbial Resources (No. NIMR-2017-3), CAMS Initiative for Innovative Medicine (Nos. 2016-I2M-2-002 and 2016-I2M-3-014), National Natural Science Foundation of China (NSFCs Nos. 81373452, 81321004 and 31400045), 863 Program (No. 2014AA021504) and Beijing Science and Technology Projects (Z141102004414065). Li-Yan Yu is supported by Xiehe Scholar.

Author Contributions

XMF performed part of the laboratory work and wrote the manuscript. TZ and JL performed part of the laboratory work. NFW performed the geochemical analyses of sediment samples. ZW sampled the sediments. LYY designed the project and revised the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10482_2019_1245_MOESM1_ESM.xlsx (17 kb)
Supplementary material 1 (XLSX 16 kb)
10482_2019_1245_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 13 kb)


  1. Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J 7:1344–1353CrossRefPubMedCentralGoogle Scholar
  2. Arrigo KR, Dijken GV, Pabi S (2008) Impact of a shrinking arctic ice cover on marine primary production. Geophys Res Lett 35:116–122Google Scholar
  3. Berner C, Bertos-Fortis M, Pinhassi J, Legrand C (2018) Response of microbial communities to changing climate conditions during summer cyanobacterial blooms in the Baltic Sea. Front Microbiol 9:1562CrossRefPubMedCentralGoogle Scholar
  4. Bienhold C, Zinger L, Boetius A, Ramette A (2016) Diversity and biogeography of bathyal and abyssal seafloor bacteria. PLoS ONE 11:e0148016CrossRefPubMedCentralGoogle Scholar
  5. Bjørlykke K (2014) Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sediment Geol 301:1–14CrossRefGoogle Scholar
  6. Bourgeois S, Kerhervé P, Calleja ML, Many G, Morata N (2016) Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 164:112–127CrossRefGoogle Scholar
  7. Bunse C, Pinhassi J (2017) Marine bacterioplankton seasonal succession dynamics. Trends Microbiol 25:494–505CrossRefGoogle Scholar
  8. Canion A, Prakash O, Green SJ, Jahnke L, Kuypers MM, Kostka JE (2013) Isolation and physiological characterization of psychrophilic denitrifying bacteria from permanently cold Arctic fjord sediments (Svalbard, Norway). Environ Microbiol 15:1606–1618CrossRefGoogle Scholar
  9. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedCentralGoogle Scholar
  10. Carr SA, Orcutt BN, Mandernack KW, Spear JR (2015) Abundant atribacteria in deep marine sediment from the Adélie Basin, Antarctica. Front Microbiol 6:872CrossRefPubMedCentralGoogle Scholar
  11. Castro HF (2000) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9Google Scholar
  12. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucl Acids Res 37:D141–D145CrossRefGoogle Scholar
  13. Colombet J, Simengando T (2012) Seasonal depth-related gradients in virioplankton: lytic activity and comparison with protistan grazing potential in Lake Pavin (France). Microb Ecol 64:67–78CrossRefGoogle Scholar
  14. Comeau AM, Li WK, Tremblay JE, Carmack EC, Lovejoy C (2011) Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE 6:e27492CrossRefPubMedCentralGoogle Scholar
  15. Conte A, Papale M, Amalfitano S, Mikkonen A, Rizzo C, Domenico ED, Michaud L, Giudice AL (2018) Bacterial community structure along the subtidal sandy sediment belt of a high arctic fjord (Kongsfjorden, Svalbard islands). Sci Total Environ 619–620:203–211CrossRefGoogle Scholar
  16. Danovaro R, Armeni M, Dell’Anno A, Fabiano M, Manini E, Marrale D, Pusceddu A, Vanucci S (2001) Small-scale distribution of bacteria, enzymatic activities, and organic matter in coastal sediments. Microbiol Ecol 42:177–185Google Scholar
  17. Dyksma S, Bischof K, Fuchs BM, Hoffmann K, Meier D, Meyerdierks A, Pjevac P, Probandt D, Richter M, Stepanauskas R, Mußmann M (2016) Ubiquitous gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J 10:1939–1953CrossRefPubMedCentralGoogle Scholar
  18. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefPubMedCentralGoogle Scholar
  19. Elverhøi A, Liestøl O, Nagy J (1980) Glacial erosion, sedimentation and microfauna in the inner part of Kongsfjorden, Spitsbergen. Nor Polarinst Skr 172:33–60Google Scholar
  20. Fisher RA (2012) The use of multiple measurements in taxonomic problems. Ann Hum Genet 7:179–188Google Scholar
  21. Forschner SR, Sheffer R, Rowley DC, Smith DC (2009) Microbial diversity in cenozoic sediments recovered from the lomonosov ridge in the central Arctic basin. Environ Microbiol 11:630–639CrossRefGoogle Scholar
  22. Giovannoni SJ, Vergin KL (2012) Seasonality in ocean microbial communities. Science 335:671–676CrossRefGoogle Scholar
  23. Harmsen HJ, Wullings B, Akkermans AD, Ludwig W, Stams AJ (1993) Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch Microbiol 160:238–240Google Scholar
  24. Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571CrossRefPubMedCentralGoogle Scholar
  25. Hoffmann K, Hassenrück C, Salman-Carvalho V, Holtappels M, Bienhold C (2017) Response of bacterial communities to different detritus compositions in Arctic deep-sea sediments. Front Microbiol 8(e0148016):266PubMedCentralGoogle Scholar
  26. Holte B, Dahle S, Gulliksen B, Naes K (1996) Some macrofaunal effects of local pollution and glacier-induced sedimentation, with indicative chemical analyses, in the sediments of two Arctic fjords. Polar Biol 16:549–557CrossRefGoogle Scholar
  27. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg SA, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, Prisco GD, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208CrossRefGoogle Scholar
  28. Huws SA, Edwards JE, Kim EJ, Scollan ND (2007) Specificity and sensitivity of eubacterial primers utilized for molecular profiling of bacteria within complex microbial ecosystems. J Microbiol Methods 70:565–569CrossRefGoogle Scholar
  29. IPCC (2001) Climate change 2001: the scientific basis. Cambridge University Press, CambridgeGoogle Scholar
  30. Jain A, Krishnan KP (2017) Differences in free-living and particle-associated bacterial communities and their spatial variation in Kongsfjorden, Arctic. J Basic Microbiol 57:827–838CrossRefGoogle Scholar
  31. Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA 109:16213–16216CrossRefGoogle Scholar
  32. Kędra M, Włodarska-Kowalczuk M, Węsławski JM (2010) Decadal change in macrobenthic soft-bottom community structure in a high Arctic fjord (Kongsfjorden, Svalbard). Polar Biol 33:1–11CrossRefGoogle Scholar
  33. Kormas KA, Tivey MK, Von Damm KL, Teske A (2006) Bacterial and archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site (9°N, East Pacific Rise). Environ Microbiol 8:909–920CrossRefGoogle Scholar
  34. Lefauconnier B, Hagen JO, Ørbæk JB, Melvold K, Isaksson E (1999) Glacier mass balance trends in the Kongsfjorden area, western Spitsbergen, in relation to climate. Polar Res 18:307–313CrossRefGoogle Scholar
  35. Li H, Yu Y, Luo W, Zeng Y, Chen B (2009) Bacterial diversity in surface sediments from the Pacific Arctic Ocean. Extremophiles 13:233–246CrossRefGoogle Scholar
  36. Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 75:361–422CrossRefPubMedCentralGoogle Scholar
  37. Park SJ, Park BJ, Jung MY, Kim SJ, Chae JC, Roh Y, Forwick M, Yoon HI, Rhee SK (2011) Influence of deglaciation on microbial communities in marine sediments off the coast of Svalbard, Arctic Circle. Microb Ecol 62:537–548CrossRefGoogle Scholar
  38. Piquet AMT, Scheepens JF, Bolhuis H, Wiencke C, Buma AGJ (2010) Variability of protistan and bacterial communities in two Arctic fjords (Spitsbergen). Polar Biol 33:1521–1536CrossRefGoogle Scholar
  39. Pugh PJA, Davenport J (1997) Colonisation vs. disturbance: the effects of sustained ice-scouring on intertidal communities. J Exp Mar Biol Ecol 210:1–2CrossRefGoogle Scholar
  40. Rappé MS, Kemp PF, Giovannoni SJ (1997) Phylogenetic diversity of marine coastal picoplankton 16 s rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina. Limnol Oceanogr 42:811–826CrossRefGoogle Scholar
  41. Roussel EG, Cragg BA, Webster G, Sass H, Tang X, Williams AS, Gorra R, Weightman AJ, Parkes RJ (2015) Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes. FEMS Microbiol Ecol 91:215–219CrossRefGoogle Scholar
  42. Sapp M, Wichels A, Wiltshire KH (2007) Bacterial community dynamics during the winter–spring transition in the North Sea. FEMS Microbiol Ecol 59:622–637CrossRefGoogle Scholar
  43. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:1–18CrossRefGoogle Scholar
  44. Singh A, Krishnan KP, Prabaharan D, Sinha RK (2017) Lipid membrane modulation and pigmentation: a cryoprotection mechanism in arctic pigmented bacteria. J Basic Microbiol 57:770–780CrossRefGoogle Scholar
  45. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, Dallmann W (2002) The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166Google Scholar
  46. Takeuchi M, Katayama T, Yamagishi T, Hanada S, Tamaki H, Kamagata Y, Oshima K, Hattori M, Marumo K, Nedachi M, Maeda H, Suwa Y, Sakata S (2014) Methyloceanibacter caenitepidi gen. nov. sp. nov. a facultatively methylotrophic bacterium isolated from marine sediments near a hydrothermal vent. Int J Syst Evol Microbiol 64:462–468CrossRefGoogle Scholar
  47. Weslawski JM, Pedersen G, Petersen SF, Porazinski K (2000) Entrapment of macroplankton in an Arctic fjord basin, Kongsfjorden, Svalbard. Oceanologia 42:57–69Google Scholar
  48. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes—the unseen majority. Proc Natl Acad Sci USA 95:6578–6583CrossRefGoogle Scholar
  49. Wiencke C, Bartsch I, Bischoff B, Peters AF, Breeman AM (1994) Temperature requirements and bio-geography of Antarctic, Arctic and amphiequatorial seaweeds. Bot Mar 37:247–259CrossRefGoogle Scholar
  50. Zajaczkowski M, Legezynska J (2001) Estimation of zoo-plankton mortality caused by an Arctic glacier outflow. Oceanologia 43:341–351Google Scholar
  51. Zeng YX, Zhang F, He JF, Lee SH, Qiao ZY, Yu Y, Li HR (2013) Bacterioplankton community structure in the arctic waters as revealed by pyrosequencing of 16 s rRNA genes. Antonie Van Leeuwenhoek 103:1309–1319CrossRefGoogle Scholar
  52. Zeng YX, Yu Y, Li HR, Luo W (2017) Prokaryotic community composition in arctic Kongsfjorden and sub-arctic northern Bering Sea sediments as revealed by 454 pyrosequencing. Front Microbiol 8:2498CrossRefPubMedCentralGoogle Scholar
  53. Zhang T, Wang NF, Zhang YQ, Liu HY, Yu LY (2015) Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic). Sci Rep 5:14524CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xiao-Mei Fang
    • 1
  • Tao Zhang
    • 1
  • Jun Li
    • 1
  • Neng-Fei Wang
    • 2
  • Zhen Wang
    • 3
  • Li-Yan Yu
    • 1
    Email author
  1. 1.Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople’s Republic of China
  2. 2.First Institute of Oceanography, State Oceanic AdministrationQingdaoPeople’s Republic of China
  3. 3.National Marine Environmental Monitoring CenterDalianPeople’s Republic of China

Personalised recommendations